YXORP
Guide and Reference Manual

yxorp version 2.33 and later



Introduction

A reverse proxy, as seen from the outside, acts like a normal server would. Unlike a server,
it does however not respond to requests directly; instead, it forwards the requests it receives
to one or more servers. A client does not directly communicate to a server; all traffic must
pass trough the reverse proxy. The reverse proxy can, before deciding to forward the request
to a server, perform all kinds of checking on the request contents, and optionally modify the
request, or even reject it.

Yxorp is a reverse proxy for HTTP. To a client, like a web browser, Yxorp behaves like a
server; to a server it behaves like a client. The main focus in the design and development of
Yxorp is to check the validity of the HTTP traffic. Yxorp does this by taking apart each
request, examining each field before the request is reassembled and sent on towards the web
server. The reverse also applies: a response from the server is also broken down, examined
and reassembled. Both requests and responses can be modified by Yxorp under control of
rules. These rules are made up of settings and statements in a special programming
language, and allow to check and modify all fields.

Many reverse proxies are available, but most are derived from normal (forward) proxies, or
modules included in a web server. Yxorp, by contrast, has been a reverse proxy from the
start, with no intention to ever be a forward proxy or web server. Also, many commonly used
reverse proxies are commercial products; one of the reasons Yxorp was started was a
comment from a friend 'that there were no good open source reverse proxies'.



Table of Contents

TIETOAUCEION. ...ceiiiiiiiiiie et ettt e e e sttt e e e e sttt ee e s s bbte e e e s s bataeeeeeeeeeeeaeens 2
How t0 deploy YXORP........ooiiiieiiee ettt et e e e e e vae e e e e aatae e e s e e e e e e e e e e aaaaaaaans 8
Minimal NETWOTK SEEUP.....uvvtiiiiiiiiiiieieeeccittrree e et e e e e e eee et ereeeeeeeeseseessssnnsnnesssenneensnes 8
SECUTE NEEWOTK SEUUD...ceiiiiiiiiiiiiieiiccieee e ee e eeeeeeeccre e e eeeeeeeeeeeeeeeseaesanrsrrrseeeesaaaees 9
YXORP DOX SEEUP...ccuvviiieiiiiiiiie e ettt e e ettt e e e ettt e e e e e trreeeeeseataeeeeeesassaeaeeasnnraaeaaaaaaaaaaaaaaens 10
DOMAIN MAIMES. ..ceiiiiiiiiiiiiiiieieeiiiiee ettt e et e e e e e e e s s sribbtateeeeeeeeeeeeesessssssssnsssssseaeaaeeaeaesesseaenens 11
SO L I ICALES. et eitiieiitie ettt ettt ettt e et e e et e ettt e e e sttt e e e eeeeeeenaanes 11
Basic configuration tUtorial...........cccceiiiiiiiiiiiiieeeee e e e e e e e e e e e e e e e aaae 12
BaSIC SEUUP . ceeiiiiiiiiiiiieee e e e e e e e e e e e e e et et eaeeeeeeeaeaaeearrrat b ————————————aaaaeets 12
Testing the configuration.............cciiiiiiiiiiiiiieeeeee e e e e e e e e e e e e e eaeas 14
AdAING SSLi.. ..ottt e et e et e e e ebe e e e ta e e e ebaeeeatbeeesraeeenabeeearbeaeeeannnes 15
Testing the configuration..............ceiiiiiiiiii i e e e e e e e e e e e 16
Adding basic authentication............ccccoiiiiiiiiiiiiiii e 16
Testing the configuration..............oeuiiiiiiiii e e e e e e e e e 17
Adding support for non-standard headers.............cccvveeeeiiiiiiiiiiiiiiieeeee e 17
Testing the configuration..............ceeiiiiiiiii i e e e e e e e e 18
Adding 10ad DalancCing..........coooieiiiiiiiiiieeeee e e e e e e e e e e e e e e et bbb aararaaaaaaans 18
Testing the configuration...........cccveiiiiiiiii i e e e e e e e 18
AddINg 8 SOTTY TULE......uuiiiiiiiiiiiiiie et e e e e e e e e e e e eeeebtarrareaeseeeaeeesssssbeaeeesessssrnnnnns 19
Testing the configuration............cceeiiiiiiiii e e e e e e e e e 20
Sticky 10ad DAlANCING..........uuviiiiiiiiiiiiiii e e e e e e e e e e e e et rarerreeeaeeaeeeaeeararaaas 20
Testing the configuration...........cccccviiiiiiiiiiccee e e e e e e e 21
SEICKY 10SS TULES...eeiiiiiiiiiiiii et e e e e e et r e e e e eeeeeeeeses s annssssraanansaaaaeaaaasaaanens 21
Testing the configuration.........ccccoccuiiiiiieiiiiiee e e e e e e rre e e e e e eraeee s 22

Rule programming CONCEPTLS......ccccuuiiiiiiiiiiiiiei e e et et e e e e e e e e e e e s s s aeenesaaraaneeeeeaessennnnnss 24
ReqUEST PrOCESSITIZ...ciiiiiiiieiiiiiiitteteeeee e e ee e et e e e e e e e eeeeeeasesssssansasbssseaeeaeaaeeeseeseeeennes 24
ReqUESE TULES...cciiiiiieeeee e e e e e e e e e e e et b e e e e e e e e e e eaaanes 25
INbouNdENntity TULES......ccciiiiiiiiiiieeeee e e e e s e e e e e e e e e e e e aaaaaas 26
REJECE TULES...ceiiiiieeeeeee ettt e e e e e e et e e e e e e rba e e e e e aaaaaaaaaaaaas 26
SEIVET SELECTION. ... .uiiiiiiiiiiiiiieeeiieee ettt e e eetee e e e e ette e e e e esrbeeeeeesnbaeeeeessnsbteaaaeeeaeaaaaaaaaaaaaanas 27
100 oy o U1 L= T OO 29
SEICKYL0SS TULES ... .ttt e e e e e e e e e e e et arreeeeeaaaeeaeeeeeeseennnssenees 29
RESPONSE PIrOCESSING...ceiiiiiiiiiiiiiiiieciiiiiiieete et e e et e e e e e eseeettbereteeeeeeeeeeeessssesssnssnssssraneeeeaeeeseenes 30
RESPONSE TULES.....oviiiiiiieeiieeccc e e e e e e e e e e e e e e et baaaaaaeeeeaaaes 31
OUthoUNAENtItY TULES. ....cciiiieiiiiiei et e e e e e et e e e e s araeeeaeeeeeeas 32

Rule progamming eXamples...........iiiiiiiiiieiiiiiiiiiieeeeeeee e e e e e e e e e et e e e e aaaaaaaans 33
Enforcing SSL for certain requests.........oouveeiiiiiiiiiiiieieeeeccciiereeee e ee e e e e 33
SSL t0 DACKENA SETVEIS...ccciiueiiiieiiiiiiiee e ettt e ettt e e e s ettt e e e seatteeeesesastaeeeesensereeessssnsseserenes 33
Filtering on client IP address, range, or domain name............cccceeeeeeeeeeeeeeeeiiiiiieeeeeeeennennnnn. 34
Filtering on a single TP address.........cooooiiiiiiiiiiiieccce e e s 34
Filtering on an IP range...........coooooiiiiiiieeeeeee ettt e e e e e e e e e e e e e e et e e e e e eaaaae 35
Filtering on domain NAmMES...........ccceeeiiiiiiiiiiiieeeee e e e e e e eeeecciirrrreeeeeeeeeeeeeeesssnnnenssssnneseees 35
Using black-, white- and greylisting.........cccoceeeiiieiiii e e e e e e 36
BIaCKIISTINIG. ... uuuviiiiiiieieeiei e e ettt e e e e e e e e e e ee e s s naeassraseeeeeeaaaeeaeseesssssnsnsssssrnneeneeennns 36

AT e =) ST o ¥ USSP 37
(=72 T o V=P URUPPRIR 38

Using an application to authenticate access to other URI's..........cccocciviiiiiiiiiieiiiiiiieeeeees 39



EXAIMIPIE.....oo oot e ettt aaaaaeeeeeeaaaeeeeeeeaaaaas 40
(0763 4 16 D E=3 T3 o OO ROPPPPPPPPRRRN 41
AdVANCEA CONCEPES....uuviiiiiieiiiiiieeeeiiteeeeeeeiiteeeeesitreeeeeesttaeeeeeaasssreeesasssssaeessassssssssssnsssnnnnnnnnnnnnnnn 42
Configuration refereNCe...........uiiiiiieciiiee ettt e et e e e e eetre e e e e seabreeeeeeeeeeeesseeeeeaees 43
Overview of the configuration file...........cceeeeiiiiiiiieiiiie e 43
Syntax of the configuration file..........cccoeeiiiiiiieiiiiiie e 43
Configuration file CONTENTS. .........cviiiiiiiiiiiieeeciccceeeee e e e e e e et e e e eeeaaaes 44
Configuring LISTENETS. .......ciiiieiiiiiie ittt ee e e e e rre e e s e s e e e e e e e e eeaeeaens 44
RECONTIGUIING....oviiiiiiiiiie et e e e e e e e e e e e e e e e e e e e eesbaaaneaeaaes 46
EXAIIPLE. ...ttt e e e e e e e e e e e e e e ——rraaaaaaae e e e e e e e e e nnrraa e aaaees 46
Configuring TLS extension Server Name Indication...........ccccccceeiiiiiiiiiiiiiciiniinieeninennnn. 47
RECONTIIGUIING....ceeiiiiiiiiie et e e e e e e e e e e e e e e ee e e e e e eeasaaaeeeeaaes 48

| 5 €20 001 o) LTSS UUURRR PSRNt 48
CONTIGUIINE SEIVEIS...cciiiiiiiieieeeiiciiiiiitteeeeeeeeeeeeeeeeeeeeettbtssrarasaaeaaaaaaeeseeesssasssssssssssssssssssren 48
RECONTIGUIING....ceeiiiiiiiiieeeee e e e e e e e e e e e e s s s e e e e e saasannaaeaaes 49

| 5 €20 011 o) (T U U UUPUUURRURUPRPPRt 49
Configuring VIrtual SEIVETS.......ccciieeeieiciiiiiereeee e e e e e eeeeeeeerrrrreeeeeeeeeeeeesaaenaeeeeeeesenes 49
RECONTIGUIING....oeiiiiiiiiiie et e e e e e e e e e e e s e e e e e e e e easannnaaeaaes 50

5 =0 401 o) LTSS RPPRRN 50
Configuring real SEIVEIS.........uuuiiiiiiiiiieieeeeeeieieccciirtereeeeeeeeeeeeeeessssneesesssrrrsesnnaeeeessssenes 51
ReECONTIGUIING.....oviiiiiiiiiiiec et et e e e e e e e e e e e e e e e e e e e e e e e as 52
520 401 o) LU SPUUURRUPSRIN 52
COoNTIGUIING TULES....cciiiiiiiiiiceee ettt e e e e e e e e e abe e e e e e e aeensnnnanan i nnnnns 52
RECONTIGUIING....oeiiiiiiiiiii et e e e e e e e e e e e e s s e e e e e enesannnaeeaaes 53
EXAIPLE ..ottt e e e e e e e ee e et e e e aaeeeeeee e e et eaaaees 53
Configuring LOZEINE.......uvviiiiieiiiiiiee ettt e e e et e e e e e arr e e e e e e araeeeeeenrraaeeaaaeens 53
ReECONTIGUIING. .....viiiiiiiiiiii et rre e e e e e e e e e e e e e e e e e e e e aaaeaaas 55
EXAMPLE. .. .oeiiiiiiiiiee ettt e e e e e e e b e e e e et b e e e e e erbrraeaaaaaaaaaaaas 55
Configuring request detail Iogging............uueeviiiiiiiiiiiiiiiiiiiiiieeeeee e e 55
ReECONTIGUIING. ....oiiiiiiiiiiiiie e e tee e e e e e e e e e e e e e e e e e e aaaaaaeas 57
EXAIIPLE. ...ttt e e e e e e e e e e e e e et ———aaaaaaaaeeaeeeee e e eantbbaaaaaaes 57
Configuring a configuration LStener ...........ccccoeeeiiiiiiiiciiiie e 57
RECONTIGUIING....oviiiiiiiiiieeee et e e e e e e e e e e e e e e e e e e e eessaaaaeaeaees 57
EXAIIPLE. ...ttt e e e e e e e e e e e e e bbb —araaaeaaaeeeee e e e e e ennrran e aaaees 57
Configuring threads..........oooi i e e e e e e e e e e e e e e e tae e e e e eeeaaees 58
RECONTIIGUIING....oeiiiiiiiiiieeeee et e e e e e e e e e e e e e e e e e e e eeabaaaeeeeaees 58

| 5 €20 001 o) LTS UUUURRRPRRPRt 59
CONTIGUIING SECUTTEY....cceeeiiiiiiiiiiiiiie e e e e ee e e e e e e e e e e e e e eeeeeeeeessssssnaaeaeaasases 59
RECONTIGUIING....ceeiiiiiiii e e e e e e e e e e e e e e s e e e e e eeesannaaeaaes 60

| 5 €20 001 o) (TS U SPUUTURRURPPRt 60
Configuring basic authentication............ccocooiiiiiiiiiiiiii e e 60
RECONTIGUIING....oeiiiiiiiiiie e e e e e e e e e e e e s e e e e e e e e easannneaeaees 61

5 =0 411 o) LTS PTUTRR R PPPRN 61
Configuring digest authentication..............ccccvveiiiiiiiiiii i 61
ReECONTIGUIING.....oviiiiiiiiiiiec et et e e e e e e e e e e e e e e e e e e e e e e e as 61
520 401 o) LU PUUURR PSRN 61
Configuring 1dap SEIVETS.....cccuviiiiieeiiiiieeeecree et ee e e e sree e e e e trbe e e e e s s s s e s e e e eeeaaaaaaeaaaaens 61
RECONTIGUIING....eeiiiiiiiiiiiieeecee et e e e e e e e e e e e e s s e e e e e eeesannnaeeaaes 62

EXAIMPLE. ...ttt e e e e e e e et et et —r— e e e aaaeeeee e e e e et aaeaees 63



ReECONTIGUIING. .....viiiiiiiiiiiie e rtre e e e e s e e e e e e e e e e e e e e aaaaaaas 64
EXAMPLE......oeiiiiiiiiiie ettt e e e e e e et e e e e et b e e e e e e abaraeaaaaaaaaaaaas 64
Configuring CACKE Areas...........ciiieeiiiiiiiieiiiieeeeecttee et e e rree e e e s s e e e e e e e e e e eeaaaaaaaaaaaaens 64
ReECONTIGUIING.....oviiiiiiiiiiii e ree e e e e e e e e e e e e e e e e e e e e e e e e as 65
EXAIIPLE. ...ttt e e e e e e e e e e e e e e bbb arraaaaaaaeeeee e e e e e ntrraa e aaaaes 65
Configuring global SEtEINGS......cccccciiiiiiiiiiiiie e e e e e ree e e e e eeaeee s 65
The method table.........cooiiiiiie e e e e e e e e eeaae 76

The header table..........ooooiiiiiieieeeeeeeeee e e et e e e e e eaeeeaae 77

The status code table..........ooiiiiiiiiiiieee e e e e e e e e eaaae 78
RECONIIGUITINEG . ...oveiiiiiiiiieieeeee et e e e e e e e e e e e e e se e e e e e e eeesaaneeeaees 78

| 5 €20 001 o) (TS USPUUURRRRPRPIRt 78

Rule 1anguage reference...........coooi it e e e e e e e e e e e e e et eeeeeaaaaaas 80
TErOAUCEION. ...eeiiiiiiiieee et ettt e e s ettt e e e s st eeeeseabbteaeesenbtaaeaeeernee 80
SEALEIMEIIES. ... uviiiiiiiieeiee e e e e e e e e e e e er ettt b areeeeeeeeaaeeeeseesasssssrassssaasaraaaaaaeeeesaannns 80
V2N F: 1 o) T TP PPPPPPPPP 81
Expressions and operator precedence.............cccccuviiiiiiiieiieeeiee e e e e 82
SPECIAL VATIADIES. ... ..eeiiiiiiiiiiiiiiieie et ee e e e e e e e e e e e e aaeaerrreeeeeeeeeeesaesennnaeeeeeessnnnnnnns 82
RULE SYNEAX...cii i e e e e e e e e e e e e s eb bbb e aaaaaaaeaeeaeaaannaranaaaeanes 83
g 0Ty 7= s PSP 83
BIOCK. ..ttt e ettt e e e ettt e e e e ettt e e e e e e bbe ettt tbtttbbttnbnnbnnnnnnan 84
1721 =3 00 1<) o | AU O UPUPPPRRRN 84
U SPPPPRRN 84
B0 T 1] s DO OO PP PP PPPPPRRRRIN 84
WHIEELIST. ettt et e st e e e e s s s s s e e e e e e e e e eeeeeas 85
BLACKIISE. ...ttt ettt et ettt et et e e et e s abe e e e btee s abeeeebteeseeanannraes 85
RETUITL .ttt ettt e e s ettt e e e e e e e e e e e e e as 86

J D 4T 1 o) DR PPPPUPPPIN 86
TAONEITTOT . ....eeiiiiee ettt et e et e sttt e s bte e s abeesebbeessateeeeabaeseesnnnnnnes 87
NUIDOTS ..ottt e e e e e e e e e e e e e e e e tttbbaaaeeaeeaaaaaaeeesessaaaaeasessares 87
LOTALS. ettt ettt st e bt e e bt e e sabee e e bbeesnabaeeeaan 87
INAIrect VAriable......ccocccuuiiiiiiiiiiieeeee ettt e e e e e e e e e e et raaaaaaaeeaeaeeaaaaaaaaens 88
RegUlar @XPreSSIOnNS........uviiiiiiiiiiee ettt e e e e e e e e e e e e e ba e e e e e e e e e e aaaaaaaaaeas 88
FUNCEION TEFEIEIICE ...ooeeiiiiiieieee et e e e e e e e e e e e e e e e e e e e e e esabbaeeeeaeaeaees 88
basicauth_add(source, realm) - cache basicauth credentials ........ccccoeeeeeiiiiiiiiiiiiiiiinnn..n. 88
basicauth_check(source, realm) - check basicauth credentials............cccoeeeivvvneeiivnnnnnn. 88
basicauth_getpass() - read password from basicauth credentials...............ccccceeeeeeenn. 89
basicauth_getuser() - read userid from basicauth credentials..............c.c.coerviriieeniiiin, 89
basicauth_reject(realm) - cause a 401 status code........cccccvvvviiveiiieiiiiiiiiiiiiiee e, 89
clearclientstate() — remove the client state........ccccceevveiiiiiiiiiiiii e, 89
clearsticky() — remove a sticky mapping from the client state.................cccovvviriiieennnns 89
clientinrange(range) — check if client IP is in a range.........cccccevevvieeiiniiiieiieeieeeeeeennnns 89
clientinip6range(range) — check if client IP is in an IPv6 range.............cccccccvvvvveneeenenns 90
clientstate(type) — retrieve value from client state...........ccccccovviiieieiiiiiiiiiniin e, 90
CONCAL(...) — COMCALENALE ....eviiieiiiiiiiee ettt e st e e e s e saree e e e e e e e e eeeeeas 90
contains(haystack, needle) — test if needle contains haystack............ccovvvvvvvrrivirnnnninns 91
contains_characters(string, list) — test if string contains characters in list.................. 91
containscase(haystack, needle) — test if needle contains haystack...............cccvvvvvennene. 91
digest_auth_check(realm, authentication source) — enforce digest authentication...... 91

enumerate_dupvar(variablename) — enumerate duplicate variables.................c.uuu...... 92



enumerate_reqhdr() — enumerate request header variables.............cccccvvvveeeiriiiinnnnnnns 92

enumerate_rsphdr() — enumerate response header variables.............cccccevvrrrrevrineeeeenn. 92
equal(s, r) — compare tWo variables.........cccceeiieeiiieiiicciiee e 93
equalcase(s, r) — case insensitive compare of two variables............ccccvvvrrrirririirrenennnnnn. 93
getattr(variablename, attr) — test attributes of a variable ...........cccccovveeiieiiiiciiiiinnn, 93
getcachearea() — return cache area name..............ccccvvvvveeeiieiiiiiieieeccciceeeeeee e 93
getclientip() — return the client ip addressS..........oooviveeeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 93
getclientcipherbits() — return the key length used in the current SSL connection....... 93
getclientciphername() — return the cipher used in the current SSL connection........... 93
getclientdomainname() — get the client domain name............cccevvveeeeeieiiieiiiiiiiiiiieeeeees 94
getclientcertfailcode() — return the client certificate failure code...............coovvveeeeeinnnn. 94
getclientcertfailmsg() — return the client certificate failure message............................ 94
getclientcertinfo() — return client certificate information.............cccccovvvveeeeee . 94
getclientcertissuerinfo() — return client certificate issuer information.......................... 94
getclientstatedvar(variablename) — read a variable from the client state.................... 95
getentity() — return the current entity.......ccccccoeiiiiiiiiiciii e 95
getinboundentityrule() — return inboundentity rule............cccccceeiiiiiiiiiiiiiiiiee e 95
getlength(variablename) — return the length of a variable .........cccccccceiiiiiiiiiniiinn . 95
getlistenerid() — return the listener id..........ccccceeeeiiiiiiiicccee e, 95
getmaxcount(variablename) — return the number of variables in a dupvar group....... 95
getmaxlength(variablename) — return the maxlength attribute of a variable ............. 95
getorder(variablename) — return the order attribute of a variable ...........cccccc...oo...l. 95
getoriginalname(variablename) — return the originalname attribute of a variable ....96
getoutboundentityrule() — return outbound entity rule...........cccceeeuvvieiieniiiiieeeeien, 96
getrejectrule() — return reject rule........ccccevviiiiiiiiiiiiii e 96
getrequestnumber() — returns the ordinal number of this request............ccccoeeeeeeeennnn. 96
getresponserule() — return reSponse Tule..........ccveeiiieeiiiiieiieciiieee et 96
getservercertfailcode() — return the server certificate failure code............cccocvueeeeeennn. 96
getservercertfailmsg() — return the server certificate failure message..........ccccueeee..... 96
getservercertinfo() — return server certificate information............cccccceeeeiiiiiiiiiiiiiiiinnnn, 97
getservercertissuerinfo() — return server certificate issuer information....................... 97
getservercipherbits() — return the key length used in the current SSL connection...... 97
getserverciphername() — return the cipher used in the current SSL connection.......... 97
getserverturnaround() — return the turnaround time for the server request................ 97
getsslbackend() — return the sslbackend flag............ccoooeiiiiiiiiiiiiiiii e, 98
getsticky() — return the sticky flag........ccooooiiii e 98
isccertverified() — return verification state of client certificate......cccoeeveeeveeeeeveeneeenenn... 98
isscertverified() — return verification state of server certificate........cccccoveeevrvccieeennnnn. 98
issslsession() — return the SSL state of the client session..............cccccovvvviiiiieiiiiiiieneennn. 98
killclientstate() — remove the client state.......ccccccooeeeeeeiiiiiiiiii e, 98
killsticky() — remove a sticky mapping from the client state.........ccccccceeiiiiiiiiiiiicnnnnnn, 98
killvar(variablename) — remove a variable...........ccccccceeiiiiiiieiieiiiirrreeeeee e 98
killvariable(variablename) — remove a variable...........cccceeiiireiiiieeiieiiieee e 98
| BN o o3 8o o [ o TR oT- 1=1=) PPN 99
LAAP_ANTE(). et eeveee ettt ettt ettt et e et e et e e et e e e e tte e e e ta e e eettee e e aarraaeaaaeeeeeaennans 99
1dap_SearCh(fIIEET )...cccceeiiiei e et e e et e e e e e e e e e e e e e e e aaaaeas 929
Idap_set_seachbase(bDase)......ccccccceeieeeeiiiiiiiiireeeeee e e e e e e e e e e e e e eenaan e e e e eeeeeennes 99
Idap_set_searchdn(dm)..........ccuiiiiiiiiiiieie et e e e e e e e e e e e e e e e e e e e 929
Idap_set_SearChPW{PW)......uuiiiiiiiiiiieeeieieeeeccccrree et et e e e e e e e e e e es e arrereeeeeeaeeeensannnnnns 100

Idap_set_SearchsSCOPE(SCOPE)....ccccurrrrrrriieeeeeeeeeeeeeeeeeccccrrrrrrereeeeeeeeeeeeeeeeeeesenasrssseeesraannens 100



1dap_Set_SerVerturi(Uri).........uueieeiiiieeieeieiiceiiiiiireeeeeeeeeeeeeeeesssneeaessreeeeesssennnesessenesnnnnns 100

redirect(Url) — redirect TeQUEST.......evviiiiiee i eeeee e 100
rdlog(numerical value) — set rdlog master flag for the current request....................... 100
rdlogfinalinternaldata(numerical value) — include dump of internal structures........ 100
rdlogerror(numerical value) — set rdlog error flag for the current request.................. 100
rdlogreceivedrequest(numerical value) — include dump of received request............... 101
rdlogreceivedresponse(numerical value) — include dump of received response........... 101

rdlogtransmittedrequest(numerical value) — include dump of transmitted request. .101
rdlogtransmittedresponse(numerical value) — include dump of transmitted response....
101
reject(reason) — reJeCt TeQUEST......uuiiiiiiiii e eeee e e e e e e e e et s 101
sanitizexforwardedfor(trusted proxy IP ranges) — check a X-Forwarded-For: header......
102

setattr(variablename, type) — set variable attribute..........cccccceeviiiiiiiiiiiiiiiieeeeeee, 102
setcachearea(cachearea) — set cache area name..........ccccceeeeeeeeiieieciiiiiiiiiieeeeeee e, 102
setclientipfromxff() — set client ip from X-Forwarded-For: header...............cc............. 102
setclientstatedvar(variablename, value) — set a variable in the client state............... 102
setclientstatefastage(seconds) — schedule removal of the client state......................... 102
setclientstateid(id) — manually set clientstate id for this request..........ccccvvveeeeeeeenn.l. 103
setclientstateidgenerate(value) — set automatic client state id generation................. 103
setconnectservertimeout(timeout) — set serverend timeout value................ccooouneenn.... 103
setcookiedomain(string) — set cookie domain.............cccvveeeeeeciieeeeieciiieeeeeeeeeeeeeeeeeeeeeens 103
setdup(variablename, value) — set duplicate variable............c.cccccvvrrrrerririiereeeeenniennnn. 104
setmaxlength(variablename, length) — set variable max length attribute.................. 104
setinboundentityrule(rulename) — set inbound entity rule.............cccccceveeeerirrinnnnnnnnn.. 104
setorder(variablename, ordinal) — set variable order attribute............c.c.oovvvvvvvnnnnnnnn.. 104

setoriginalname(variablename, originalname) — set variable originalname attribute.....
104

setoutboundentityrule(rulename) — set outbound entity rule..........ccccceeeeeeiiciiiiiinnnnnn. 104
setreadfromservertimeout(timeout) — set serverend timeout value...........ccccoevvvunnne..n. 105
setresponserule(rulename) — set reSPoNSe rule..........ccceeeeiiiiiiiieeiiiiiiiiieeeeeeeeeeeeeeenee 105
setrejectrule(rulename) — set reject rule to run...........coccceiiiiiiiiiiiiecee e, 105
setsendxforwardedfor() — send X-Forwarded-For: header to server............cccccuvvvveeeeee. 105
setsslbackend() — set sS1 DaCKENd ......ccoooeeiiiiiiiiiiiiiiiccceeeee e 105
setsslserverconnecttimeout(timeout) — set serverend ssl timer............cocoveviviiineiinnnn.. 105
setsslserverreadtimeout(timeout) — set serverend ssl timer.........cccoeeeeeiiiveeiiiiineennnnn.. 106
setsslserverwritetimeout(timeout) — set serverend ssl timer......cccoevveeeeeeieeeiieneeeaennns 106
setsslserverclosetimeout(timeout) — set serverend ssl timer.............ccccceeeeeeeeeeeeeeennnnn. 106
setsticky() — Set StiCKY flag......ouuiiiiiiiiii e 106
settargetserver(id) — set target SErver.........cooovivvieiiiiiii i 106
setwritetoservertimeout(timeout) — set serverend timeout value.............ccccoeeeeerrnnnn... 106
statuscodemsg(code) — returns status code textual message.........ccccccvvvvveveeeeierennnnnn.n. 106
strremove(haystack, needle) — remove matching string...........cccccccvvveeeeeeeeiieiineninnennn... 107
trace(message) — send a message to the trace log..........ccccovviiiiiiiiiiiiiiiiee e, 107
unsetsslbackend() — clear ssl backend .............viieieeiiiiiiiiiiiiiie e, 107
unsetsticky() — clear sticky flag.......ccuviiiiieiiiiiiieeciee e 107
writetofile(filename, value) — write to a file......ccccoeeeeeeiiiiiiiiiiiiiicee e, 107
writeentitytofile(filename) — writes entity to a file........cccceeeeeeeiiiiiiieiiiiec e, 107
yesno(x) — return truth value as yes OF NO........ceeeiiiiiiiiiiiieiiiireeeeeee e 107

The vIrtual MaACKINIE. ....ccooooiiiiiiiiiieeeeee e e e e e e e e e e e et e s saanees 108






How to deploy YXORP

Yxorp, as a reverse proxy, should be somewhere between the client browsers and the web
server(s) it is proxying for; the traffic between the clients and the web server(s) should flow
through Yxorp. To make this work, and especially if you want to use Yxorp as a security
device, you will need to carefully plan for the network environment that you will be using
Yxorp in. If you make the wrong decisions, implementing Yxorp may decrease security
instead of enhancing it; but also, if the networking design is wrong, it may cause your web
servers to become unreachable, or serve pages with some of the content missing etc.

Minimal network setup

The diagram below shows a typical example of the minimal Yxorp deployment. The diagram
shows an Ethernet segment which connects web servers, an Yxorp server, and client
systems. A firewall connects to the Internet. Clients, i.e. systems running browsers etc.,
reside on the Internet.

] Internet client

Intranet client é Web server 1
-

Web server 2

YXORP server

The firewall is, in this kind of setup, most probably running NAT (and thus will probably
have only one public Internet address).

An important note to take from this picture is that this setup is not inherently secure. The
firewall would need to be configured to allow traffic into the Yxorp server (i.e. port 80 and/or
443). If Yxorp is broken, this allows traffic into your network without further restrictions. If
for instance Yxorp is compromised, for example by an attacker exploiting an error in Yxorp's
code, or by a mistake in the configuration, the attacker might able to insert another
configuration or bypass Yxorp. By changing the configuration, it might be possible to setup
a tunnel that might work well enough to allow other TCP protocols to be passed into any box
on your network.

A possible solution to this is to make sure all boxes on your network are secure in
themselves. One way of doing that is to make sure each box runs firewalling software and is
adequately patched, like you would normally do for a box that is directly connected to the
Internet.



Secure network setup

The diagram below shows a more secure setup. The Yxorp box is sitting between two
firewalls; the outer firewall allows port 80 and/or 443 from the Internet into Yxorp; the
inner firewall allows port 80 and/or 443 from Yxorp into the web servers.

Internet client
% Web server 1
Intrapet client

E Web server Z

The difference with the minimal setup is that the traffic between Yxorp and the web servers
is now restricted by the second firewall; this means that even if Yxorp is compromised, it is
still not possible to use that vulnerability to reach the Intranet clients or other systems on
the internal network (like your server running Samba and NFS for your MP3-collection).

i
‘T"

YXORP server

Another example by which almost the same security principles are reached is shown below.
It uses a firewall with three interfaces; one connects to the outside world, one connects to
the internal network, and one connects to Yxorp.

| Internet client

Intranet client Web sen

YXORP server é Web ser

This setup is almost as secure as the two-firewall setup. The differences are mainly that the
complexity of the firewall rules is increased, and that one wrong rule in the firewall could
open up the internal network. In a corporate environment, you would want to prevent that;
if you are just running Yxorp at home and are in control of all involved systems, the




differences are not that important.

A better example of a corporate environment is in the next drawing. It shows a two-firewall
setup again, but this one is even more complicated because management traffic is separated
from production traffic. Reasons for doing this would be like: being able to segregate duties
between several systems management teams, retaining some form of control over the
infrastructure even if a denial of service attack is in progress, better insight in traffic flows
so network IDS boxes would be easier to configure, etc.

] Internet clients

Web server 1

Webhosting seg

ent
YXORP server
eb server 2

Management segmeit

()

Monitoring & loghosts Internal network

Note that the drawing is simplified; for instance, it does not shows what happens behind the
web servers. Normally, there would be another security zone there for the application
servers, and maybe even another one for things like database servers and mainframes.

YXORP box setup

If you want to use Yxorp to enhance security, you must pay attention to the system that
Yxorp will run on. Ideally, the system would be hardened (i.e. all security settings should be
at the maximum level that will allow the box to do what you need it for) and also it should
be minimized (i.e, there should not be any software that you do not need installed on it). The
philosophy of minimizing a system is based on the idea that software that is not installed on
the box cannot be vulnerable to attacks, and does not need security patches.

For Linux, most distributions come with a minimum software set; that would be a good
start. Take a look at what is included in the software set anyway, some distributions for
instance install inetd (which you probably wouldn't need) and telnet (which you wouldn't
want). Solaris currently has the reduced networking set, which is appropriate for this kind



of system.

The next step is hardening. Take a look at what listening ports there are, and determine if
you really need them. Typically, a box running Yxorp only would need sshd to be active, so
you can manage the box (you can of course also use a console, but that is rather awkward if
you need to upgrade or patch the box). Also look at what processes are running; if there are
any you don't need, prevent them from starting or uninstall the software for them.

Domain names

If a user enters http:/www.example.com/ in his browser, the browser connects to the IP
address that his system thinks www.example.com lives on (i.e. what his DNS server tells his
system). So, for Yxorp to do anything meaningful, www.example.com needs to resolve to the
IP address that Yxorp runs on.

Yxorp then needs to forward the request to the real server. Yxorp uses it's own mechanism
for this, which is based on IP-addresses only (it would not make sense to use DNS for this).
However, the web server will need to think it is called www.example.com because otherwise
it will not be able to find the right content for the request (at least not if you use HTTP/1.1
and a virtual hosting capable web server).

Exactly what and how you need to configure for this is very much dependent on the actual
web servers. The most important part to remember is that the domain name needs to point
to Yxorp, the Yxorp configuration needs to list the IP-addresses of the real servers, and the
actual web server(s) need to be configured to serve content for the domain name.

SSL certificates

If you want to use SSL between the clients and Yxorp, you will need to install keys and
certificates on the Yxorp server. The default installation procedure described in the
INSTALL file contains some steps that help in generating a test certificate authority, server
certificates, and optionally client certificates.

Yxorp can deal with the TLS extension called server name indication. SNI makes it possible
to use virtual hosting in combination with SSL. SNI works by allowing a client to send the
desired server name before the SSL handshake has completes, and, more to the point, before
the server has to present it's certificate (which must contain the server name).

Current major browsers in general seem to support SNI — if they are running on a current
major operating system. To enable SSL with SNI for Yxorp, it needs to be built with
OpenSSL 0.9.8g or later. The current major Linux distributions currently include a suitable
version of OpenSSL; there is no need to build it specifically to enable SNI any longer.
However, there are also many distributions that are not yet at a suitable level; check the
output from the ./configure to be sure (especially the messages saying something like
“checking if openssl version is high enough to support TLS extensions... yes” and “checking if
openssl version is high enough to support TLS extensions... yes”). If necessary follow
instructions on how to enable SNI on backlevel distributions in the file INSTALL.tlsext.


http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

Basic configuration tutorial

Basic setup

Since version 2.25, the normal open-source stanza of configure, make, make install no longer
installs the default configuration. You will need to read the file INSTALL that came with
the distribution to install the default configuration that this tutorial uses, as well as for
things like generating certificates.

The default configuration you get by following the instructions in the file INSTALL is used
in this tutorial to explain the basics of how Yxorp works and to show some of the things
Yxorp can do.

There are no complicated things necessary to run this configuration; it only needs a machine
with Internet access to run Yxorp and a machine (possibly the same) that runs browsers and
can connect to the Yxorp machine. You don't need to set up a web server, because the
tutorial uses Yxorp's web site at http://yxorp.sourceforge.net/ (this is why the system needs
Internet access).

First, we will look at the contents of the default configuration file.

<?xml version="1.0"7?>

<yxorpconfig>
<l-- Main yxorp configuration file -->
<!l-- where the log files go -->

<log accesslog="/var/log/yxorpaccess" errorlog="/var/log/yxorperror" />

The first interesting line here is the <log> tag; it sets where the logfiles will go. The file
names set here are the files Yxorp will actually write to; log file rotation will cause Yxorp to
close the current file, rename it, and open a fresh one with the original name.

The format of the access and error logs can be changed, but for this tutorial, log formats are
left at their defaults.

<!l-- This is the tcp port the xml listener will run on -->

<configlistener port="7780" ipaddress="127.0.0.1" />

The <configlistener> tag enables the configuration listener. This makes it possible to use
online reconfiguration; i.e. you do not have to stop and restart Yxorp every time you make a
change in the configuration. Also, the command “yxorpconfig -r” can be used to look at the
actual configuration (including all defaults) that is running, the command “yxorprealserver”
can be used to set servers in or out of service, “yxorpclientstate” can be used to look at client
states, etc.


http://yxorp.sourceforge.net/

<!-- request rule that will check and modify a request -->

<rule id="rulel" type="request">

<! [CDATA[
if (Host: ~/"[a-z\.]+%$/) {
Host: = "yxorp.sourceforge.net";

} else if (Host: ~/~[0-9\.]+%$/) {
reject("You are not allowed access through the IP address of this server");
} else {
Host: = "yxorp.sourceforge.net";
}
11>

</rule>

This <rule> tag defines the rule program that will be executed on receiving a request. Which
rule to run on a request is defined on a listener, as we will see later in this example. This
particular rule looks at the value of the Host: header (every variable name ending in a colon
""is interpreted as a header name). If, in this rule, the Host: header contains only letters
and dots (as in most domain names), it changes the Host: header to “yxorp.sourceforge.net”.
If however the Host: header contains numbers and dots (as in IP addresses), it rejects the

request.

<l--the reject rule will be executed if something is wrong with the request-->
<rule id="rule3" type="reject">
<! [CDATA[
errorhtml="<html>
<head>
<title>Nicht Touchen, U only watchen das Blinkenlights!</title>
</head>
<body>
<h1>Error ";
errorhtml=concat(errorhtml, errorcode, " - ", rejectreason);
errorhtml=concat(errorhtml, "</hl></body></html>");
Server: = "yxorp-x.x";
11>
</rule>
This <rule> tag defines the reject rule, that is used whenever a request is rejected (either by
the Yxorp code, or by the use of the reject function in a script). As with the request rule, it is
normally set on the listener. This rule composes a customized error message by using special
variables like errorhtml and errorcode. Note how the errorhtml variable is set; the string
spans multiple lines. Below the multiple-line string, the special variables errorcode and
rejectreason are added; this will generate a simple HTML page showing a text showing
which error code Yxorp generated (or received from the server), and a text message giving
the reason why the request was rejected. In a real situation, you may not want to give out
this information; however, the choice is yours, and for this tutorial it makes sense not to
hide the reason why Yxorp rejects a request.



<!-- the definitions for the listeners -->
<listener
id="testl"
ipaddress="0.0.0.0"
port="80"
rule="rulel"
rejrule="rule3"
/>
This bit defines the listener. Note especially the IP address; as it is set here, this will cause
Yxorp to bind to all the available interfaces in the system. If you set a specific IP address,
Yxorp will listen only on that address. Also note the rule settings; this sets the linking
between the listener and the rules for the requests that come in on this listener. There are
several rule types you can set on the listener, and in other places; most go beyond the scope
of this chapter. Further on, though, we will deal with special rules that run if servers are
not available.

<server id="yxorp.sourceforge.net" virtualserver="groupl" />

<virtualserver id="groupl" schedule="1lru">
<real id="sf" />

</virtualserver>

<realserver id="sf" ip="dns" inservice="yes" />

This bit defines what happens with the contents of the Host: header in a request (i.e. what
would normally be the domain name of a server). The Host: header value is matched to a
<server> definition (i.e. the <server> definition should normally have the same name as the
domain name). The <server> in this example is named “yxorp.sourceforge.net”, and thus will
be selected if the Host: header contains this domain name (remember we used the request
rule above to make sure it does). The <server> maps to a <virtualserver> group;
<virtualservers> are used to create the link between one “logical” <server> and one or more
“physical” <realserver>. This is the way Yxorp can be configured for load balancing.

This virtualserver group defines only one real server (more will be added later on in this
tutorial). The last line defines the real server; note that it does not list an IP address but
“dns”; this causes the Host: header to be resolved in DNS to be translated to an IP address.
This is useful for examples and testing, but in a real life situation it is better to define IP
addresses for reasons of security and performance. In this case it is very easy, because I
don't have to update configurations and documentation if Sourceforge decide to change their
IP addresses.

If you followed the instructions in the file INSTALL that comes with the source code, the
complete configuration file for this example should have been installed on your system. You

can also pick it up from http://yxorp.sourceforge.net/examples/yxorpconfig.xml

Testing the configuration

As root, start yxorp with the following command:
# yxorp

Yxorp needs to be started by root; however, it will release most privileges the root user has


http://yxorp.sourceforge.net/examples/yxorpconfig.xml

(on Solaris and Linux). You can also configure Yxorp to change to another userid and group
and/or run it in a chroot jail, see the configuration reference for details.

Since version 2, Yxorp starts as a background daemon by default (so it may appear as
though nothing happened). You can use any of the following commands to verify that Yxorp
is running:

# yxorpconfig -r (reads the actual configuration from the daemon)
or
# ps -e| grep yxorp (lists the process table and looks for yxorp)

If you did not install Yxorp into some directory in your path, you'll have to include a path to
the yxorp command. Yxorp uses a default configuration file name to start from; the default
filename is “yxorpconfig.xml”, and Yxorp looks for this file in the default location for
configuration files. On most systems, this is /usr/local/etc. Both can be changed as in the
following example:

# yxorp -c my-yxorpconfig.xml -s /directory-for-yxorp-configurations
If you did not change the default installation, and did not set -c <configfilename> as an
option to yxorp, the configuration described in the paragraphs above should be active.

Verify it is working by pointing your favorite browser to http:/localhost/ ; you should now
get the Yxorp website that is really at http://yxorp.sourceforge.net/

You can leave the Yxorp daemon running for the next steps in this tutorial, however, if you
want to stop the daemon for some reason, use the following command:

# yxorp -K

Adding SSL

In this step, we will merge the following bits in the active configuration:

<?xml version="1.0"?>
<yxorpconfig>
<!-- the definitions for the ssl listener -->
<listener
id="testlssl"
ipaddress="0.0.0.0"
port="443"
rule="rulel"
rejrule="rule3"
ssl="yes"
certfile="yxorptest.pem"
/>
</yxorpconfig>
As you see above, this configuration snippet defines another listener, but with some added
fields for SSL. The most important bit is the “ssl=yes” switch, that determines that this
listener will actually expect SSL. The other important bit is the certfile definition; this is the
filename that the certificate is stored in. Yxorp will try to read this file from the sysconfdir
that has been set in by configure; usually this is something like /usr/local/etc or /etc.

The certificate should have been installed if you followed the instructions in the INSTALL
file, but you can also use your own certificate. Yxorp tries to read the file from the same


http://yxorp.sourceforge.net/
http://localhost/

directory as it's configuration is in; usually this is /usr/local/etc.

The complete configuration file for this example is available in the Yxorp source tree in the
data/examples directory, it is called add_ssl.xml. You can also pick it up from

http://vxorp.sourceforge.net/examples/add ssl.xml

Testing the configuration

If you stopped Yxorp after the step above, start it again. Apply the extra SSL configuration
bits by running the command:

# yxorpconfig -c add ssl.xml

Verify it is working by pointing your favorite browser to https://localhost/ . You should get a
popup window from your browser about the certificate, since it is self-signed. Depending on
your browser, you may also get a warning about nonsecure items on the page, this is
because the Sourceforge logo on top of the Yxorp page is inserted with an absolute http
URL, and thus is retrieved directly from the original Sourceforge site instead of being
proxied by Yxorp.

Adding basic authentication

A simple example of adding basic authentication is in the following configuration snippet:

<?xml version="1.0"7?>

<yxorpconfig>

<rule id="rulel" type="request">

<! [CDATA[
if (Host: ~/~[a-z\.1+$/) {
Host: = "yxorp.sourceforge.net";

} else if (Host: ~/~[0-9\.]+%$/) {
reject("You are not allowed access through the IP address of this server");
} else {
Host: = "yxorp.sourceforge.net";
}
if (uri ~/"\/yxorp*$/) {
basic _auth check("my-realm", "local");
}
11>
</rule>

<basicauth realm="my-realm” userid="aladdin" passwd="sesame" />

</yxorpconfig>

Note that the source for rulel is completely replaced. In the last if-statement, the regexp
checks if the URI contains /yxorp in the beginning; if it does, it will demand basic
authentication by the function call to 'basic_auth_check("my-realm", "local")'.
Basic_auth_check will reject the request if valid basic authentication credentials are not
present in the request; thus, the reject rule we already had will be activated.


http://localhost/
http://yxorp.sourceforge.net/examples/add_ssl.xml

The basic authentication credentials that are accepted are defined in
<basicauth realm="my-realm” userid="aladdin" passwd="sesame" />

The realm="my-realm” portion in the definition must correspond to the first parameter in
the basic_auth_check call. This allows you to define several “realms”, each of which may
give access to different parts of your content. The userid/password combinations are unique
within the same value of the realm, but not across realms; so the same userid and password
may be defined multiple times in several realms.

Testing the configuration

If you stopped Yxorp after the step above, start it again. Apply the basic authentication
configuration bits by running the command “yxorpconfig -c add_basicauth.xml”. Again, the

file is in data/examples, or http:/yxorp.sourceforge.net/examples/add basicauth.xml
Verify it is working by pointing your favorite browser to http:/localhost/ . This should work

as before. Now point your browser at http:/localhost/yxorpdoc-2.html and you should get a
popup window asking for userid and password.

Now run the command

yxorpconfig -r
This will read the complete configuration from Yxorp as it is currently active, and look for
the line saying:

<basicauth realm="my-realm” base64="YWxhZGRpbjpzZXNhbWu=" />

This is the internal representation that Yxorp uses for basic authentication credentials.
Note that this is not any form of encryption (which would not make a lot of sense since basic
authentication is not very secure), but the base64-encoded form of userid and password. You
can specify either the base64 or userid/password forms in a configuration; Yxorp will always
report the base64 form.

Adding support for non-standard headers

Some sites use other headers than those described in RFC2616 and later; also, Yxorp does
not necessarily know about all headers in all RFC's (since there are lots). By default, Yxorp
discards headers it does not know about. If however you need one of these headers, you can
add it to Yxorp's table of headers as in the following example:

<?xml version="1.0"?>

<yxorpconfig>

<globalconfiguration>

<header id="X-Pad:" xlateid="X Pad:" client="1" server="1"
check="rfc2616-text" maxlen="80" />

</globalconfiguration>

</yxorpconfig>
In this example, a header named “X-Pad” is added (this header is at the time of writing sent
out by Sourceforge's project web servers, where Yxorp's website resides).

Refer to the configuration chapter for full detail on the settings that you can specify for a
header. One thing to look at is the check parameter, which sets the character set that Yxorp
will check the contents of the header to, and the length parameter, which is the maximum
length of this header that Yxorp will accept. For most header attributes, you can specify if


http://localhost/yxorpdoc-2.html
http://localhost/
http://yxorp.sourceforge.net/examples/add_basicauth.xml

Yxorp should ignore (and discard) the header, or reject the request.

Testing the configuration

Testing the effect of the change above is a bit harder than with the previous examples, since
I'm not exactly clear on when Sourceforge's servers insert this header, and some browsers
don't allow you to look at the headers. One definite way would be to trace the traffic between
your browser and Yxorp with Ethereal, for example.

As before, apply the change by the command yxorpconfig -c add_headers.xml, find the file in
data/examples or on http:/yxorp.sourceforge.net/examples/add headers.xml

Adding load balancing

To use load balancing, we need to add a second web server (i.e., a “real server”) to the
configuration and setup the “virtualserver” to know about this second real server. How this
is done is demonstrated by the following configuration snippet:

<?xml version="1.0"?7>

<yxorpconfig>

<virtualserver id="groupl" schedule="1lru">
<real id="sf" />
<real id="sf2" />

</virtualserver>

<realserver id="sf" ip="dns" inservice="yes" />
<realserver id="sf2" ip="dns" inservice="yes" />

</yxorpconfig>
Note that what this does is just duplicate the definition of the original real server. In a real

example, you would obviously define different servers (otherwise, what's the point of load
balancing), and use IP addresses instead of the “dns” testing shortcut.

Testing the configuration

Apply the change: yxorpconfig -c add_loadbalancing.xml from data/examples or
http:/yxorp.sourceforge.net/examples/add loadbalancing.xml and access the site a couple of
times via http://localhost/ . Then look at the access log file (usually in /var/log/yxorpaccess)
and look for the realserver names in the log entries, these should look similar to these:



http://localhost/
http://yxorp.sourceforge.net/examples/add_loadbalancing.xml
http://yxorp.sourceforge.net/examples/add_headers.xml

127.0.0.1 27340 [09/Jan/2006:17:39:17 +0100] sf "GET
http://yxorp.sourceforge.net/yxorpdoc-2 html m34ac0a87.png" 200 501 15874 546
15836 501 299 546 261 737

127.0.0.1 27342 [09/Jan/2006:17:39:17 +0100] sf2 "GET
http://yxorp.sourceforge.net/yxorpdoc-2 html m64bcb189.png" 200 501 17568 546
17530 501 299 546 261 753

127.0.0.1 27346 [09/Jan/2006:17:39:17 +0100] sf2 "GET
http://yxorp.sourceforge.net/yxorpdoc-2 html 1cb9e497.png" 200 500 17250 545
17212 500 299 545 261 744

127.0.0.1 27344 [09/Jan/2006:17:39:17 +0100] sf "GET
http://yxorp.sourceforge.net/yxorpdoc-2 html m5fd42.png" 200 498 32706 543
32668 498 299 543 261 945

As you see, both realservers are scheduled.

You can now have a look at the realserver status with the yxorprealserver command, as
follows:

# yxorprealserver -v

sf : inservice available config
sf2 : inservice available config
#

Other options on the yxorprealserver command allow you to manually set a server out-of-
service or unavailable:

# yxorprealserver -v -u sf

sf : inservice unavailable config
sf2 : inservice available config
#

Note the difference between inservice and available; Yxorp can automatically set a
realserver out-of-service if it fails to respond to a connection several times in a row (and
Yxorp will also automatically set it inservice again if it responds to a new connection that is
scheduled by the auto-wakeup mechanism). Yxorp will however not change the
available/unavailable flag.

There is another difference between inservice and available, this has to do with sticky load
balancing. See the example on that for a discussion.

One last thing to try with this setup is what happens if you set both realservers out-of-
service. Note the ugly message a client gets in this case. This is where the sorry rule comes
in.

Adding a sorry rule

If no servers in a virtualserver group are available, it is possible to let a sorry rule run. A
sorry rule can generate a custom HTML page, as we did above with the reject rule. However,
especially with a complex layout for a sorry page, this can be a lot of work, and another
technique is possible that we will see in the example below:



<?xml version="1.0"7?>

<yxorpconfig>

<rule id="sorryrule" type="sorry">
redirect("http://yxorp.sourceforge.net/noserver.html");
</rule>

<server id="yxorp.sourceforge.net" virtualserver="groupl" sorry="sorryrule" />
</yxorpconfig>

The sorry rule just generates a redirect (i.e., a 307 Temporary Redirect status code, with a
Location: header set to http:/yxorp.sourceforge.net/noserver.html.

Also note that the definition of the sorryrule is on the server level, not on the virtualserver.
This is because it may be necessary to have a different sorry page for each server definition,
even though these servers may share the virtualserver group.

Testing the configuration

As above, activate the file add_sorryrule.xml from data/examples or
http://vxorp.sourceforge.net/examples/add sorryrule.xml, then make sure both realservers
are set out-of-service or unavailable, and then try http:/localhost/ and if all has gone well,
you should now be redirected to http://yxorp.sourceforge.net/noserver.html.

Sticky load balancing

Sticky load balancing is the technique where many clients are distributed evenly over a
group of servers, but each request from a specific client is always sent to the same server,
i.e. the load balancer “remembers” the association between a client and a server. This is
necessary if an application runs on the webservers that is not stateless, and there is no
other means of sharing the state over the servers. If you want to share state on the
web/application server level, or if you want sticky load balancing, is a discussion that goes
rather far beyond the scope of this tutorial.

Yxorp can do sticky load balancing, however, the implementation has some drawbacks
compared to straight load balancing; at least, the total throughput of Yxorp will decrease
somewhat. Also, the table in which the state mapping is maintained may grow large,
especially if someone is doing denial-of-service attacks on your site (or worse, targeted
attacks tailored to let Yxorp's tables grow).

The way Yxorp keeps track of which client is which is by setting a session cookie. This
cookie will by default have the name “<your-hostname>_state”, and will be valid until the
end of the “session” (in most cases, this is the lifetime of the browser instance). The cookie
value will be a randomly generated string like
XL61DSOFPS4PLEDXUIBVIBSLLU3011ZX1ZOB1WVWSOWI9SWNMG2CEXGZFW6CQ1L.
The cookies and associated client state information are timed out after a configurable time
of inactivity. See the chapters on client state for more details.

The configuration changes to enable sticky load balancing are simple:


http://yxorp.sourceforge.net/noserver.html
http://localhost/
http://yxorp.sourceforge.net/examples/add_sorryrule.xml
http://yxorp.sourceforge.net/noserver.html

<?xml version="1.0"7?>

<yxorpconfig>

<virtualserver id="groupl" sticky="yes">
<real id="sf" />
<real id="sf2" />

</virtualserver>

</yxorpconfig>

In fact, the only change this makes is the “sticky=yes” part.

Testing the configuration

Activate the configuration from http://vxorp.sourceforge.net/examples/add sticky.xml or
data/examples. Then, point your browser to http://localhost/ and cause a couple of hits.

Then, use the yxorpclientstate command as follows:

# yxorpclientstate -v
<yxorpclientstate>

<clientstate
1d="IQ3AHIIPFKEDO1SQUQ1H67CPX68NMFSUARUWQESXGEXGGQTOTU74DIYU92C7VO"
clientip="127.0.0.1" sticky="1" lastactive="[09/Jan/2006:23:52:37 +0100]"
hitcount="1" toclient="9850" fromclient="451" toserver="9850"
fromserver="451" >

<stickymap server="yxorp.sourceforge.net" realserver=sf2" />
</clientstate>

<tablestats entries="1" tablebytesize="824" maxchainlength="1"
tabletruncated="0" />

</yxorpclientstate>
#

As you see, the value of the state cookie is linked to a lot of information. For this example,
note the stickymap tag; this links requests for a certain server to a specific realserver.

Client states (and following from that, also the sticky load balancing mappings) are cleaned
up automatically by Yxorp after a configurable time of inactivity, see the chapter on client
state for more details.

Sticky loss rules

Similar to the sorry rules we already saw, there is also the case in sticky load balancing
when the mapped server is no longer available. In this case, Yxorp has a special rule called
“stickyloss” that handles what happens with the request.


http://localhost/
http://yxorp.sourceforge.net/examples/add_sticky.xml

<?xml version="1.0"7?>

<yxorpconfig>

<rule id="stickylossrule" type="stickyloss">
redirect("http://yxorp.sourceforge.net/stickyloss.html");
</rule>

<server id="yxorp.sourceforge.net" stickyloss="stickylossrule" />

</yxorpconfig>

You would typically want a stickyloss rule to explain that clients have lost their state in an
application, and need to retry to another server.

Testing the configuration

Activate the configuration from http://vxorp.sourceforge.net/examples/add stickyloss.xml or
data/examples. Use the yxorprealserver command to check if you need to restore the
realservers to available and inservice after the experiments in the previous example. Then,
point your browser to http://localhost/ and cause a couple of hits.

Then, use the yxorpclientstate command as follows:

# yxorpclientstate
<yxorpclientstate>

<clientstate
1d="PQJZNM51ELUXTKDNECCZQIRLC1MEOBZBALX68AWBLMKIEQ78NV22YEXWLWMKV4"
clientip="127.0.0.1" sticky="1" lastactive="[10/Jan/2006:00:35:36 +0100]"
hitcount="3" toclient="29584" fromclient="1763" toserver="29584"
fromserver="1763" >

<stickymap server="yxorp.sourceforge.net" realserver=sf" />
</clientstate>

<tablestats entries="1" tablebytesize="824" maxchainlength="1"
tabletruncated="0" />

</yxorpclientstate>
#

Note the server that is mapped (in this case it is sf), and set it out-of service as follows:

# yxorprealserver -v -o sf

sf : out-of-service available config
sf2 : inservice available config
#

and see what happens if you reload your browser (remember, it needs to be the same
window as before, since Yxorp's state cookie should only be valid in a single browser
instance). If everything is correct, nothing apparently has changed. Why? Because we just


http://localhost/
http://yxorp.sourceforge.net/examples/add_stickyloss.xml

set the sf server out-of-service; it will not be eligible for new sticky mappings, or normal
scheduling, but it will continue to serve for valid states.

Next, to see the stickylossrule in action, we will do:

# yxorprealserver -v -u sf

sf : out-of-service unavailable config
sf2 : inservice available config
#

If you reload your browser again, you should now see the effect of the stickyloss rule.



Rule programming concepts

Yxorp has several types of rule, each of which is applicable to a specific phase of processing a
request or reply, or addresses a specific situation that may occur during the processing of a
request or response.

For the purpose of documentation, it is easiest to deal with the rule types by dividing the
processing of a single request and the response to that request in three groups: Request
processing, server selection, and response processing.

Request processing

The drawing below shows which rules are run during Yxorp's request processing, i.e. the
process that happens from the point when Yxorp has received a request from a client, to the
point where Yxorp needs to figure out which server to send that request to.



Request checks failed

Request rule defined
Run request rule

W

Rule execution error or reject(} called

Request entity present { paad request
entity

/

Inbound entity rule
defined

Run inboundentity rule

Rule execution error
or reject() called

h

{ Run reject rule |

Request ready
to be sent to server
or processed Request
from cache rejected

In the drawing, the observant reader will note that the green 'state’ box in the lower left
includes 'request ready to be processed from cache'. The current version of Yxorp does not
define rules to run if a request is served from Yxorp's cache; this will be added in some
future version.

Request rules

The request rule is run whenever a request is processed, and a request rule is defined. The
request rule must be defined on the listener that the request comes in on. Because the
request rule is by definition the first rule that runs in the processing of a request, it has no
context (i.e. no variables set by other rule types can exist).



The request rule has access to all headers that have been taken from the request, and the
following special variables:

Name Use

uri The uri variable has the uri for the current request. It is in the form as
taken from the request, except that it is normalized to a relative uri, i.e.
the protocol and host parts are removed if the request contained them. In
RFC2396 terms, everything up to the path specification is removed.

The uri variable may be assigned a different value. If this is done, the
request that is sent to the server will contain the modified value.

method Set to the method name. Use for reference only; changing this variable
will have no effect.

rejectedheaders If Yxorp rejects a header (because it does not know this header, it is
overlength, contains illegal characters, etc) the header name is appended
to this variable to form a space-separated list of all rejected variables.

Inboundentity rules

An inboundentity rule is used when a request is processed, and an inboundentity is present
on the request, and the rule is set for this request. The rule may either be inherited from a
definition on the listener that this request came in on, or it may be set by a request rule by
calling the setinboundentityrule() function.

The inboundentity rule runs in the context of the request; that means that it has access to
all the header variables and also non-header variables that were set in the request rule. All
values for the variables will be as they were left by the request rule.

Inboundentity rules also have access to the same special variables as request rules do.
Beyond that, the entity itself is also available to this rule type, but currently this is limited
to access through function calls only (there is an experimental function that takes the entity
and puts it in a variable, but that function will be deprecated in a future version).

Reject rules

The reject rule is run whenever the base code of Yxorp detects an error during the
processing of a request, or when a rule executes a reject() function call. The context of the
reject rule depends on the rules that ran before it. It inherits all non-header variables from
those rules.

If a reject rule runs (either by a call to the reject() function or triggered by the base code),
the effect is ultimately that the request or response is not processed normally. If a
connection to the client exists at the time that the reject is processed, an error message will
be sent to the client. In some cases, this will include a meaningful error code as defined in
the HTTP specification. In many other cases, the error code will be a default of 400 — Bad
request, because the HTTP specification does not include status codes for all reasons that
Yxorp may reject a request for.

Reject rules have access to a number of special variables that allow you to change the error
that is sent to the client. It is also possible to include HTML into the error message, so that



a simple page can be displayed by a browser.

Name Use

rejectreason holds the text message explaining the reason that the Yxorp base code
rejected the request.

statuscode holds the status code reported by the server that processed the request

errorcode if set, the error code from this variable will be reported to the client
instead of the default (400 — Bad Request) in case of a rejected request

errormessage if set, the error reason string from this variable will be reported to the
client instead of the default (400 — Bad Request) in case of a rejected
request.

errorhtml if set, html code contained in this variable will be inserted in the reject
message.

errortitle if set and errorhtml is not set, this variable defines the contents of the

<title> tag in a reject page.

errorrejectreason if set and errorhtml is not set, this variable allows an override of the
default reason string in a reject page.

Server selection

The diagram below shows how Yxorp selects to which server a request should be sent, and
which rules may run during this process. Rules only run during the server selection process
if something went wrong; either Yxorp is unable to send the request to a server, or the
server that the user was sticky-loadbalanced to is no longer available.



Sticky loadbalancing enabled and state exists for client

Server preselected
(ie. settargetserver() called)

Gelect server from Host: headeD

Server directly maps to realserver

Choose realserver
from virtualserver using
loadbalancing algorithm

Connect to
realserver

Connect failed, Retryable

Connect failed, Sticky

¥

Run stickyloss rule Connect failed
or reject if no rule defined

h 4

Run sorry rule
or reject if no rule defined

Retryable

Retryable




Sorry rules

A sorry rule is run by Yxorp if it can not connect to a server, respecting the in- or out-of-
service and available status, and retries to the maximum configured in the
globalconfiguration item maxserverconnectionattempts.

The sorry rule can call functions that change the processing of the request (for instance
sending it to another server by calling the settargetserver() function); or call the redirect()
function that will cause the client to redirect to another URL (for instance a 'sorry' page), or
call the reject() function, causing an error to be returned to the client.

Both the reject() and redirect() function calls cause the reject rule defined for this request to
be run. If neither of these functions is actually called during the execution of the sorry rule,
Yxorp assumes that some other aspect of the request was changed by the rule and will retry
to setup a session, up to and until the maximum specified in maxserverconnectionattempts.
If the maximum retries are exhausted, Yxorp ends the request by causing a reject, and
causing a reject rule, if defined, to be run.

Sorry rules inherit variable tables, including header variables, from earlier rules. Sorry
rules may also access the following special variables:

connectionretries holds the number of times that yxorp attempted to set up a
connection to a server during the processing of this request.

maxconnectionretries holds the number configured in globalconfiguration item
maxserverconnectionattempts.

Stickyloss rules

A stickyloss rule is run by Yxorp if it can not contact, within the current retry limits set in
the globalconfiguration, and respecting the available status, the specific server that this
specific request should be send to according to the sticky load balancing state that Yxorp
maintains for this client.

A stickyloss rule can call functions to change the processing of the request (exactly like sorry
rules can). In this specific situation however, changing something about the request may not
make sense; the specific server maintaining the state can not be made contactable in this
way.

Both the reject() and redirect() function calls explicitly or implicitly cause the reject rule
defined for this request to run. If neither of these functions is called, Yxorp assumes that
some other aspect of the request was changed by the rule and will retry to setup a session,
up to and until the maximum specified in maxserverconnectionattempts. Keep in mind
however that this may not make sense, because the specific server maintaining the state
will most probably still not be contactable.

If the maximum retries are exhausted, Yxorp ends the request by causing a reject, and
causing a reject rule, if defined, to be run.

Stickyloss rules inherit variable tables, including header variables, from earlier rules.
Stickyloss rules may also access the following special variables:



connectionretries holds the number of times that yxorp attempted to set up a
connection to a server during the processing of this request.

maxconnectionretries holds the number configured in globalconfiguration item
maxserverconnectionattempts.

stickylost set to 1 if a stickyloss situation has occurred for this request; this
variable may be used to disambiguate where the same rule code is
shared by sorry or stickyloss rules

Response processing

The diagram below shows which rules Yxorp runs during the processing of a response. This
is the final stage of Yxorp's processing of a request.



Response checks failed

Response rule defined

Run response rule

Y

Rule execution error or reject() called

Response entity present
and outbound entity rule defined {,—-
=t Al

/ “\

n outboundentity ru Ia

Rule execution error or reject() called

k
Send response
to client { Run reject rule
k
Finished Request
rejected

Response rules

Response rules are run by Yxorp when a response rule is defined for this request, either
inherited from the listener the request originally came in on, or set by calling the
setresponserule() function in a rule previously run for this request.

The response rule inherits any non-header variables from earlier rules. Header variables
are taken from the response as sent by the server. The response rule also has access to the
following special variables:



Name Use
uri for reference only

method Set to the method name. Use for reference only; changing this variable
will have no effect.

rejectedheaders If Yxorp rejects a header (because it does not know this header, it is
overlength, contains illegal characters, etc) the header name is appended
to this variable to form a space-separated list of all rejected variables.

Outboundentity rules

Outboundentity rules are run by Yxorp when a response rule is defined for this request,
either inherited from the listener the request originally came in on, or set by calling the
setoutboundentityrule() function in a rule previously run for this request.

The outboundentity rule inherits header variables from the response rule that ran before it.
If no such rule exists, no header variables are available to the outboundentity rule. Other,
non-header variables are inherited from any other rule that ran before the outboundentity

rule.



Rule progamming examples

This chapter deals with rules, and how they can be used to change requests and responses.
The focus in this chapter is on real-world situations that are applicable to many Yxorp
users. The examples given are only parts of a complete configuration; in most cases, an
example of a rule is shown, to illustrate the subject of the paragraph.

If you run Yxorp as a security device, these rules may however not be complete; you should
not just copy them and think your web server is secure. Remember, a reverse proxy is a
complicated thing, and a minor mistake in the configuration may decrease your security
instead of increasing it. Always be sure that you understand what you're dealing with, read
up on RFC's and other documentation, make traces to see what is happening on the wire.

Enforcing SSL for certain requests

If you have a webserver with some unimportant content that you want to allow anyone
access to (for instance, pictures of your pets), and also some restricted content (like your
webmail application) you may want to make sure that logging in to your webmail server is
only possible if SSL is used on the session - to to make sure your userid and password will
be encrypted on the Internet. This can be done with a rule as follows:

<rule id="rulel" type="request">

<! [CDATA[
if (uri -/~\/webmail/) { // if uri starts with “webmail” in lower case
if (!issslsession()) {

reject(“Sorry, you're not using SSL");

¥
11>

</rule>

A more userfriendly way is also possible, in which the client is automatically redirected to
the SSL variant of the URL that was attempted:

<rule id="rulel" type="request">

<! [CDATA[
if (uri -/~\/webmail/) { // if uri starts with “webmail” in lower case
if ('issslsession()) {

redirect(concat(“https://"”, “www.yourdomain.whereever”, uri));

¥
11>

</rule>

SSL to backend servers

Normally, Yxorp will use HT'TP to backend servers (i.e. the servers that Yxorp is reverse-


http://www.yourdomain.whereever/

proxying for). In some cases however, it is desirable to connect to a backend server (i.e. a
server that Yxorp is reverse-proxying for) using SSL.

To do this, some extra definitions are needed for the realserver objects, and a request rule
must be used to enable SSL on the backend connection for the requests.

If your realserver definition is like:
<realserver id="sf" ip="192.0.2.1" port="80" inservice="yes" />
change it to include the sslport tag as follows:
<realserver id="sf" ip="192.0.2.1" port="80" sslport="443" inservice="yes" />

Then, in your request rule, add a call to the function “setsslbackend()” as in the following
example:

<rule id="rulel" type="request">
<! [CDATA[
. code to determine if you want to reject the request straight away

if (... some code to see if you want to enable ssl backend encryption for this
request) {

setsslbackend();

11>

</rule>

In the current versions, Yxorp does not by default check if the certificate that the backend
server presents is valid. That means it could be a self-signed certificate, or it could be out of
date, it could be issued for another domain name, etc. You could be accepting a certificate
that is forged to make you think you are connecting to a verified site, while instead you are
connecting to something else. If you are not in complete control of the server(s), use the
isscertverified() function to verify the server certificate, and read the Advanced Concepts
chapter on SSL processing.

Note that the setsslbackend function must be called for each request that you want to use
backend SSL for.

Filtering on client IP address, range, or domain name

To allow access to some set of web resources based on the IP address of the client, use one of
the examples below as a starting point.

Filtering on a single IP address

It is possible to filter on a single IP address as follows:



<rule id="rulel" type="request">
<! [CDATA[

if (uri -/some part of the uri you want to filter on/) {
if (!(getclientip() -/7127\.0\.0\.1%$/)) {
reject(“sorry, you don't have the right IP address”);

11>

</rule>

Note that the IP address is returned from the getclientip() function in its normalized textual
form for the protocol in use (IPv4 or IPv6). In the example, the local host would have the
address 127.0.0.1 for IPv4, but in IPv6 ::1, and :ffff:127.0.0.1 may both occur.

Filtering on an IP range
It is possible to filter on a range of IP addresses as follows:
<rule id="rulel" type="request">

<! [CDATA[

if (uri -/some part of the uri you want to filter on/) {
if (!(clientinrange(“192.0.2.0/24"))) {
reject(“sorry, you don't have the right IP address”);

11>

</rule>

The clientinrange() function determines if the client IP address is in the given range. The
function can only process IPv4 ranges, however, there is an equivalent IPv6 function called
clientinip6range().

Filtering on domain names

Filtering on client domain names can be done as well. The next example shows how to filter
on the last two parts of the domain name:



<rule id="rulel" type="request">
<! [CDATA[

if (uri -/some part of the uri you want to filter on/) {
if (!(getclientdomainname() -/.*example\.com$/)) {
reject(“sorry, you don't have the right domain name”);

11>

</rule>

The getclientdomainname() function returns the reverse DNS lookup for the client IP
address. Note that in some cases, the reverse lookup of an address gives a different name
than a normal lookup. Also, because Yxorp does not normally resolve the names of clients,
using this function may impact performance.

Using black-, white- and greylisting

In filtering requests, a blacklist is used to specify what is not allowed. Everything that is not
in the blacklist is allowed. In contrast, a whitelist specifies what is allowed; if something is
not explicitly in the whitelist, it is not allowed.

Greylisting is a less well defined term, that has lately been associated with a technique for
spam filtering. In the Yxorp context, we will use the term to define either black- or
whitelists with exceptions for subsets of a list case.

Blacklisting

A typical blacklist rule is shown in the following example:

<rule id="rulel" type="request">
<! [CDATA[

blacklist uri {
-/\.exe/
-/\.dll/
-/"\/cgi-bin/
} if-failed {
reject(“sorry, you did not pass the blacklist on this server”);

11>

</rule>

In the example above, all requests containing the regular expressions anywhere in the URI



will be rejected., except for the cgi-bin entry, which is anchored to the beginning of the URI.

In general, build your filters to anchor from the start of the URI; otherwise they may be too
general (like the .exe and .dll patterns above). Don't anchor patterns only at the end,
because webservers will accept several kinds of “parameters” to be passed in an URI (like:
“http:/localhost/?blablabla”, “http://localhost/#somereference” etc); you could use several
constructions in your regular expressions to match in the desired way, but this may prove to
be tricky to get right. Alternatively, an easy way out is to use one of the functions in the rule
language to strip unwanted parameters off the URI before matching against the white- or
blacklist.

Whitelisting

A typical whitelist rule is shown in the following example:

<rule id="rulel" type="request">
<! [CDATAI

whitelist uri {
-/™\/$/
-/"\/index\.html$/
-/"\/pictures/\.*\.jpg$/
-/"\/htmlfiles\/.*\.html$/
} if-failed {
reject(“sorry, you did not pass the whitelist on this server”);

11>

</rule>
In the example above, all requests not containing one of the regular expressions will be
rejected. Note that the expressions are anchored at the beginning of the URI, to avoid the
issues with parameters described above. Still, the URI “http:/localhost/pictures/hacker.dll?
whatever.jpg” would pass this whitelist.

So, how can you make a secure filter? Consider all of these measures:

1. Be careful about what is on your web servers, where it is, and what it is. If you don't
need it, it should not be on the server. Especially take care that updates, fixes, and
patches do not (re-)install default content, samples, etc.

2. Filter first using a blacklist, and in this way exclude all URI's that you do not want
to make accessible. Things like executables for active content (cgi-bin, .php, .dll etc)
can easily be excluded in this way.

3. Then use a whitelist, and specify what you do want to make accessible. The whitelist
is the most tricky part, because an expression that allows too much will give access
to more resources than it should.

4. Test the filter to see if it does what you expect!


http://localhost/pictures/hacker.dll?whatever.jpg
http://localhost/pictures/hacker.dll?whatever.jpg
http://localhost/#somereference
http://localhost/?blablabla

Greylisting

Most blacklists and whitelists have a disadvantage: The filtering they provide is in some
cases too black-and-white (pun intended... I mean too coarse-grained). For instance, in the
whitelist example above, all files in the pictures directory are accessible. What if you have
several directories there, but want to exclude one from the whitelist? This is where
greylisting comes in: a whitelist (or blacklist) with exceptions. The following example shows
this:

<rule id="rulel" type="request">
<! [CDATA[

whitelist uri {
-/"\/$/
-/”™\/index\.html$/
-/"\/pictures\/\.*\.jpg$/ : if (uri -/~\/pictures\/secret/)) continue-list;
-/"\/htmlfiles\/.*\.html$/
} if-failed {
reject(“sorry, you did not pass the whitelist on this server”);

11>

</rule>

The if-statement following the pictures regexp in this example examines the URI more
closely; if the regexp in the if-statement matches, the continue-list statement causes the
earlier match to be ignored.

This example uses a simple if-statement, however, all normal statements can be used within
a white- or blacklist in this way. It is even possible to nest white- and blacklists, as shown in
the following example:



<rule id="rulel" type="request">
<! [CDATA[

whitelist uri {
-/"\/$/
-/"\/index\.html$/
-/~\/pictures\/\.*\.jpg$/ : blacklist uri {
-/™\.pictures\/secret/
} if-failed {

reject(“sorry, your request is an exception
to the whitelist”);

-/"\/htmlfiles\/.*\.html$/
} if-failed {
reject(“sorry, you did not pass the whitelist on this server”);

11>

</rule>

Using an application to authenticate access to other URI's

Situation

Consider the following situation: You have an existing webmail program on your server
(we'll use Squirrelmail in this example). You also have some other stuff on your server, that
you do not want everyone to be able to see. Thirdly, you also have public content that
anyone may see.

What Yxorp can do with this is using the login to Squirrelmail to authenticate users for the
private pages; so, the private pages would only be accessible after a user has successfully
logged in to Squirrelmail.

So, how does this work? Squirrelmail has a login page on which a user types userid and
password. If the user clicks the login button (or presses enter), the browser will post the
content (userid & password) to another URI, which is a Squirrelmail page that will verify
userid and password. If successful, Squirrelmail will send a 302 “Found” status, with a
redirect to the main webmail page, and set an authentication cookie (“key”). If unsuccesful,
Squirrelmail will send a redirect to a page with a message that userid and password were
invalid.

Yxorp needs to do the following to be able to use this:
1. Track the client, i.e. setup a state cookie.
2. Allow free access to the Squirrelmail login pages.

3. Monitor the returned traffic from Squirrelmail to see if the authentication cookie is



present

4. Allow access to other pages based on if the authentication cookie was seen
previously.

Note that the authentication cookie will only be sent once, as the result of the post. So,
Yxorp must remember it. To do so, we will use the client state variable feature in Yxorp.

Example

The rule that processes requests coming in from clients is as follows:

<rule id="rulel" type="request">
// these uri will be served without authentication

whitelist uri {

-/7/squirrelmail\/src\/login\.php/ // login page
-/”~/squirrelmaill\/images\/sm_logo\.png/ // logo on login page
-/7~/squirrelmail\/src\/redirect\.php/) // this processes the login

// add other public uri here

} if-failed {
if (!getclientstatedvar("authenticated")) {
redirect("http://www.example.com/your-home-page");
return;

</rule>

In this example, note that the regexp patterns for the URI's are anchored at the start to
prevent accidentally matching something else. The final if-statement in the example shows
what to do if we have not (yet) seen a valid login; the most user-friendly action here is to
send a redirect to your homepage or something, but in general you should not do this as a
default action for all requests to your website, because this may give out unnecessary
information to hackers. Since anything that is handled here should be a request to
something the user is not authorized for, it may be a better idea to reject the request
outright.

The second rule we need is the rule that processes the response coming back from the
server. It is shown in the following example:



<rule id="rule2" type="response">
<! [CDATA[
foreach i (enumerate dupvar("Set Cookie:")) {
if (statuscode==302 && $i -/key=/) {
if (uri -/7/squirrelmail\/src\/redirect\.php/) {
trace("authenticated");
setclientstatedvar("authenticated", "true");
}
} else if ($i -/key=deleted/) {
trace("authentication cancelled");
setclientstatedvar("authenticated", "");

}
11>
</rule>

In this rule example, note the use of duplicate variables and the foreach statement to
process all of the variables in a dupvar group. This is necessary because more than one
Set_Cookie header may be present in the response from the server, and the one we need (the
one that sets “key=") may not be the first one.

Also note the check for statuscode=302 (“Found”), which is the normal result from a POST
request. In contrast, the else part of the if statement does not check for a statuscode, but
just for the presence of a Set_Cookie header with a value of “key=deleted”. This is what
happens if the user clicks the logout link within Squirrelmail; in this way the key value for
the authentication is removed from the browser.

Especially note the explicit check for the URI causing the 302. If it was omitted, any active
resource on the server could cause a 302 status code and a Set_Cookie, thereby potentially
bypassing the userid and password check that we assume Squirrelmail to do for us.

Finally, the call setclientstatedvar(“authenticated”, ...) is used to set a client state variable
called “authenticated” to the appropriate value. This is the variable we used in the request
rule to determine if the request to the private pages are allowed.

Conclusion

So, what we have accomplished is a “login” to some arbitrary pages containing private
content, without changing anything on the server. If the rules are carefully coded, and the
application you use is solid, this can be a very secure way to control access.

However, you should understand that even though the authentication is performed, Yxorp
does not know which user is logged on. As such, this example may be used to grant access to
users, but it can not be used to give different access to different users.



Advanced concepts

This chapter provides examples and reference information about complex reverse proxy
processing.



Configuration reference

Yxorp reads its configuration from an XML file at startup, and sets up it's internal
representation of the configuration statements. While Yxorp is running, a new configuration
file can be inserted into the running configuration; this may extend the configuration, but
also replace parts of the original configuration. It is also possible to read the actual
configuration from the running daemon.

Overview of the configuration file

The configuration statements are grouped; each group deals with a set of configuration
items. These groups are:

configlistener; this group deals with the TCP interface that is used to read or update the
configuration in an active yxorp daemon;

log; this group contains the statements that configure logging;

listener; this group, that may occur more than once in a configuration, controls the proxy
processing and sets the TCP ports that the yxorp daemon will listen to;

rule; may occur multiple times and contains the rule programming language statements;
threads; controls the settings that the yxorp daemon will use for worker threads;
security; controls security settings;

server; controls which (virtual or real) servers yxorp can send requests to;

virtualserver; controls the groupings of servers that are used as loadbalancing or failover
pools;

realserver; controls the settings of real servers that are mapped from a server definition
or a virtualserver pool;

globalconfiguration; controls which settings the yxorp daemon uses for things like timers,
retry limits to connect to servers, headers to process, etc;

basicauth; sets which userid/password combinations are recognized for local basic
authentication processing;

debug; controls filtering of debug output messages. If yxorp is built with debugging
support enabled, these filters may be used to selectively show some message types.

Syntax of the configuration file

The configuration file should be formatted as follows:



<?xml version="1.0"7>
<yxorpconfig>
<log>
. logging settings
</log>
<configlistener>
. config listener settings
</configlistener>
<rule id="name” type="request”>
. rule code
</rule
</yxorpconfig>

Configuration file contents

The configuration file must start as follows:
<?xml version="1.0"7?>
<yxorpconfig>

and end as follows:
</yxorpconfig>

The other contents of the configuration file depend on what Yxorp functions you want to use.
These are described in the next sections.

Configuring listeners

Listeners are the end point for sessions between a client and Yxorp. For Yxorp to do any
useful work, at least one listener must be created.

There are two types of listener, corresponding to the two types of proxy: dissecting and
tunneling. The dissecting proxy completely takes a request apart, may run all kinds of
scripts on each part of the request, and then reassembles it and forwards it to a server. In
contrast, a tunnel proxy does not do any processing on a request, but just forwards it as-is to
a server. Which type of proxy is chosen depends on the definition in the listener; a listener
may invoke either type of proxy, but not both.

A listener is created by setting a <listener> tag in the configuration. The <listener> tag
takes the following attributes for a dissecting proxy:

Attribute Format

id string  Must be set on each listener, and sets the listener identifier.
The id must be unique. It is used in logging and tracking, and
in the reconfiguration process.

type number 4 means IPv4, 6 means IPv6. Default is IPv4.

mode string  “tunnel” creates a tunnel proxy; “dissect” creates a dissecting
proxy. “dissect” is default.

port number TCP port number the listener will bind to.



Attribute

ipaddress

rule

resprule

rejrule

inboundentityru
le

outboundentityr
ule

cachearea

ssl

certfile

pvtkeyfile

certpasswd

cafile

Format

ipaddre
ss

string

string

string

string

string

string

string

string

string

string

string

requestclientcert number

ificate

verifyclientcertif number

IP address the listener will bind to. If type=4, then a normal
dotted IP address must be set; if type=6, an IPv6 address
notation must be set. The IPv4 address 0.0.0.0 has a special
meaning and will bind to all local addresses of the system.

The name of the rule that will be executed for requests.

The name of the rule that will be executed for responses. This
setting can be changed by using rule functions in the request
rule.

The name of the rule that will be executed if a request is
rejected. This setting can be changed by using rule functions.

The name of the rule that is run after an inbound entity (ie.
client-to-server) has been received. Setting this causes inbound
entities to be buffered, and the request to be processed store-
and-forward. This setting can be changed by using rule
functions.

The name of the rule that is run after an outbound entity (ie.
server-to-client) has been received. Setting this causes
outbound entities to be buffered, and the request to be
processed store-and-forward. This setting can be changed by
using rule functions.

The name of the cache area that is applicable for requests
coming in on this listener. This setting can be changed by
using rule functions.

“yes” to enable SSL, “no” to disable. If Yxorp is built without
SSL support, presence of this attribute will cause an error
message.

Name of a file containing the certificate to be used. The
certificate must be in PEM format. The file must also contain
the private key associated with the certificate, or the pvtkeyfile
attribute must be used.

Name of a file containing the private key associated with the
certificate set by the certfile attribute. If the pvtkeyfile
attribute is not used, Yxorp expects to find the private key in
the file set by the certfile tag.

Optional password to decrypt the certificate with

Name of a file containing the certificate authority information
that is used to verify certificates. The file must be in PEM
format.

If nonzero, Yxorp will request a client to send a client
certificate during the setup phase of a SSL connection between
a client and this listener.

If nonzero, Yxorp will verify client certificates it receives from



Attribute Format

icate sessions from clients to this listener. If the certificates do not
verify, the session setup will be aborted.

For a tunneling proxy, the following attributes are applicable:

Attribute Format
id string  Must be set on each listener, and sets the listener identifier.
The id must be unique. It is used in logging and tracking, and
in the reconfiguration process.
type number 4 means IPv4, 6 means IPv6. Default is IPv4.
mode string  “tunnel” creates a tunnel proxy; “dissect” creates a dissecting
proxy. “dissect” is default.
port number TCP port number the listener will bind to.
ipaddress ipaddre IP address the listener will bind to. If type=4, then a normal
SS dotted IP address must be set; if type=6, an IPv6 address
notation must be set. The IPv4 address 0.0.0.0 has a special
meaning and will bind to all local addresses of the system.
tunneldest ipaddre If mode="tunnel”, IPv4 address of the tunnel destination host;
SS if mode="dissect”, this attribute has no meaning.
tunnelport ipaddre If mode="tunnel”, TCP port number on the tunnel destination
ss host; if mode="dissect”, this attribute has no meaning.
Reconfiguring

All attributes on a listener can be reconfigured on-line. If the socket attributes (port and
ipaddress) are changed, Yxorp will close the current socket and bind to a new socket with
the new settings. If the new socket is in use on the operating system level, this might take
an extended period of time; if sessions or programs are active on the new socket, the socket
may not become available at all, causing Yxorp to keep retrying to bind to the socket.

In case a certificate file modification time stamp has changed, the certificate file will be
reloaded.

Example

The following example creates a dissect listener for IPv4 on the HTTP port, that will bind to
the localhost interface (and thus only accept requests sent to the localhost address):



<listener
id="www"
type="4"
mode="dissect”
ipaddress="127.0.0.1"
port="80"
rule="wwwreq”
resprule="wwwresp”
rejrule="wwwrej"”

/>

The next example will create a tunnel listener using IPv6 on the HTTPS port, and connect
to an IPv4 server on address 1.2.3.4:

<listener
id="www"
type="6"
mode="tunnel”
ipaddress="fe80::210:1100:0123:4567"
port="443"
tunneldest="1.2.3.4"
tunnelport="443"

/>

Configuring TLS extension Server Name Indication

When built with OpenSSL version 0.9.8g or later, Yxorp can support the TLS extension
Server Name Indication. This means that one of several server certificates may be presented
to the client, according to the server name that the client includes in the TLS handshake
(assuming, of course, that the client also supports SNI).

The certificate, CA file etc. configured on the <listener> tag is the default certificate in the
SNI context; that is, the certificate on the <listener> tag is presented to the client if no
server name is included in the TLS handshake. If the server name is present, this name is
used to map into a list of <certlist> items that can be configured inside the <listener> tag. If
a match is found, the certificate defined by the <certlist> is used for the TLS/SSL
handshake; if no match is found, the default defined on the <listener> tag is used.

The <certlist> tag takes the following arguments:

Attribute Format

hostname string  The host name, or server name in the TLS context, that will be
used to map to this certificate list entry.

certfile string  Name of a file containing the certificate to be used. The

certificate must be in PEM format. The file must also contain
the private key associated with the certificate, or the pvtkeyfile
attribute must be used.

pvtkeyfile string  Name of a file containing the private key associated with the
certificate set by the certfile attribute. If the pvtkeyfile



Attribute Format

attribute is not used, Yxorp expects to find the private key in
the file set by the certfile tag.

certpasswd string  Optional password to decrypt the certificate with

cafile string  Name of a file containing the certificate authority information
that is used to verify certificates. The file must be in PEM
format.

Reconfiguring

All attributes on a <certlist> item can be reconfigured. In case a certificate file modification
time stamp has changed, the certificate file will be reloaded.

Example

The following example shows how <certlist> items are configured:

<listener
id="tlslistener”
ipaddress="127.0.0.1"
port="443"
certfile="test.pem”

<certlist hostname="www.example.com”
certfile="examplecert.pem” />

<certlist hostname="secure.example.com”
certfile="secureexamplecert.pem” />

</listener>

Configuring servers

Yxorp uses the servers listed in the configuration as an abstraction layer for servers. A
server can either directly map to a real server, or map to a virtual server for load balancing.
If no servers are available, a special rule type called the 'sorry rule' is executed.

A server is identified by the name taken from the Host: header, and thus, normally the same
as the domain part of the URL that was requested. If rule code is used to modify the Host:
header value, the changed value is used. If the value in the Host: header does not
correspond to any server, the request is rejected (by executing a reject rule, if one is
specified; or by the default reject actions).

A server is created by setting a <server> tag in the configuration. The <server> tag takes
the following attributes:

Attribute Format

id string Must be set on each server. The id must be unique. The id is
used to select a server based on the contents of the Host:
header.

virtualserv string Identifies the virtual server that will process the request.


http://www.example.com/

Attribute Format
er Mutually exclusive with the realserver attribute.

realserver string Sets a direct mapping from server to real server. Mutually
exclusive with the virtualserver attribute.

sorry string Name of the rule to be executed if no real servers are available
for processing the request.

stickyloss  string Name of the rule to be executed if the real server a sticky
session was mapped to is no longer available.

track string “yes” or “no” to indicate if requests to this server cause tracking
to be invoked for this client.
Reconfiguring

All attributes on a server can be reconfigured on-line.

Example

The following example creates a server that will map requests for a domain name (Host:
header value) of yxorp.sourceforge.net to a virtual server named “servergroupl”. If none of
the servers in the group is available, the sorry rule “sorryrule-yxorp” is invoked.

<server
id="yxorp.sourceforge.net”
virtualserver="servergroupl”
sorry="sorryrule-yxorp”

/>

The following example creates a server that will map requests for a domain name (Host:
header value) of yxorp.sourceforge.net to a real server named “bigserver”:

<server
id="yxorp.sourceforge.net”
realserver="bigserver”
sorry="sorryrule-yxorp”

/>

Configuring virtual servers

The configuration settings for a virtual server list which real servers may be used to process
a request. The virtualserver configuration also determines the scheduling algorithm to be
used for load balancing.

Real servers will be excluded from the load balancing if they are out-of-service. If one of the
real servers has been set out-of-service automatically, is is possible to have the virtualserver
schedule a request to it occasionally, to determine whether it has become available again.
This mechanism is called “real server wakeup”. This should work without disruption; if
Yxorp is not able to connect to a server, another server will be connected after a short
timeout.

A virtual server is created by setting a <virtualserver> tag in the configuration. Inside the


http://yxorp.sourceforge.net/
http://yxorp.sourceforge.net/

virtualserver tag , the <real> tags are used to list the real servers. The <virtualserver> tag

takes the following attributes:

Attribute
id

schedule

wakeup

wakeupfrequency

sticky

clearrealservers

Format
string

string

string

number

string

number

Must be set on each server. The id must be unique.

Identifies the scheduling algorithm the virtual server will
use. Currently defined are “roundrobin”, “randomrobin”,
“Iru”, and “weightedrandom”.

Enables or disables waking up of mapped real serves that
have been automatically set out-of-service. Valid values are
“auto” for automatic wakeup and “manual” for disabling
the mechanism.

Average number of requests scheduled to in-service real
servers in between attempts to wakeup a real server. Do
not set to a value less than 100.

“yes” or “no” to set sticky load balancing for this client on
this server group.

If non-zero, all <real> tags within this virtualserver will be
cleared.

The <real> tag takes the following attributes:

Attribute
id
weight

add

remove

Reconfiguring

Format
string

number

number

number

Must be set on each server. The id must be unique.

If weightedrandom scheduling is used, this attribute is
used to define the weight of this real server mapping. A
weight of zero defines a “server of last resort”, that will be
scheduled only if no servers with a higher weight are in
service and available.

(default non-zero) If non-zero, this <real> tag will be added.

If non-zero, this <real> tag will be removed.

All attributes on a virtualserver can be reconfigured on-line. The list of real servers will by

default be replaced.

Example

The following example creates a virtual server that will load balance requests over a group
of three real servers, using the roundrobin scheduling algorithm, and automatically retrying
to inservice servers that may have become unavailable:



<virtualserver

id="servergroupl”

schedule="roundrobin”

wakeup="auto”

wakeupfrequency="100"

<real id="serverl” />

<real id="server2” />

<real id="server3” />

</virtualserver>

Configuring real servers

The configuration settings for a real server define the attributes of actual servers.

A real server may be set out-of-service automatically if it fails to respond to requests.

A real server is created by setting a <realserver> tag in the configuration. The <realserver>
tag takes the following attributes:

Attribute Format
id string
ipaddress  IPv4 address

port number
sslport number
verifyserve number
rcertificate

cafile string

available string

inservice string

reason string

Must be set on each server. The id must be unique.
Numerical IPv4 address of this server.

It is possible to set “dns” instead of the numerical IP address
here; this will cause the value of the Host: header to be used to
lookup the IP address and connect to it. This is useful for
debugging and testing, but do not use this in production
situations, as it might be a security risk, and it will also
decrease performance. Note also that “dns” only works for
requests associated with a dissecting listener, not with a
tunnel.

TCP port on the server . If not set, 80 is the default.
SSL-capable TCP port on the server.

If non-zero, SSL connections to this real server will verify the
server certificate. If the certificate does not verify, the
connection setup will be aborted.

File containing the certificate authority information against
which the server certificates will be checked.

“yes” or “no” to set the intended availability state. If
unavailable, Yxorp will not send requests to this server, except
requests from sticky-loadbalancing sessions that have a sticky
state mapping to this server.

Possible values are “yes” or “no”; automatically changed by
server wakeup mechanisms (see virtualserver). If out-of-
service, Yxorp will not send requests to this server.

(display only) The source of the information in the inservice



Attribute Format

attribute; “config” if the setting was derived from configuration
file or command; “auto” if the setting was caused by an
automatic process.

Reconfiguring

All attributes on a real server can be reconfigured on-line.

Example

The following example creates a real server. The initial state of the real server is available,
that is, the server is presumed to be able to process requests; the server is also set inservice,
which means that new requests can be scheduled to this server.

<realserver
id="bigserver”
port="80"
ipaddress="10.1.0.117"
inservice="yes"”
available="yes”

/>

Configuring rules

Rules are small programs written in a special programming language. Each rule contains
exactly one such program, which can deal with a request or response. The rule language
itself is described in a separate chapter.

A rule begins with a <rule> tag, and ends with a </rule> tag. The text space in between
these tags are assumed to be the program source. The rule program source is compiled when
the configuration file is read; syntax errors will be reported. The configuration process will
abort if serious errors are detected.

Since the configuration file uses XML, and the rule language uses text constructs that may
not be valid in “plain” XML, it is sensible to enclose all rules in <![CDATA[ ... 11> tags.

The <rule> tag takes the following attributes:
Attribute Format

id string Required; must be unique across a configuration. The listener
rule and resprule attributes refer to this id.

type string Value can be “request”, “response”, “reject”, “inboundentity”,
“outboundentity”, “stickyloss” or “sorry”. The value is currently
used for configuration file documentation only; defaults to

“request”.



Reconfiguring

All parts of a rule may be reconfigured.

Example

<rule id="example” type="request”>
<! [CDATA[
// rule source

host: = “yxorp.sourceforge.net”;
11>
</rule>

Configuring logging

Yxorp logs to files. Normal requests are logged to the access log; requests denied (either by a
rule or by Yxorp code) are logged to the error log; and rule programs may log information to
another log file, called the trace log. There are also files for debugging output, and for
request details.

The log file names are set as attributes on the <log> tag in the configuration file.

The <log> tag takes the following attributes:

Attribute Format
accesslog string  File name for the access log
debuglog string  File name for the debug log. Note that you only need this if

Yxorp has been built with debugging enabled, and if debug
settings in the configuration actually cause debugging output.
If no file name has been set, and debug output is generated, it
will be sent to stdout.

requestdetaillog string  File name for the request detail log. This log file can be used to
capture detail information about each request, or alternatively
about failed requests only. The amount of information logged is
much larger than with the accesslog or debuglog. The
<requestdetaillog> tag can be used to tailor what information
is logged; also, function calls in the rule language allow to
make specific exceptions for specific requests.

errorlog string  File name for the error log

tracelog string  File name for the trace log. You will only need this if you have
rule programs containing the trace function.

Log entries in the access and error logs are formatted from a printf-like format string. Any
normal text in the format string is simply copied to the log; tokens starting with '%' are
interpreted as field names, and substituted with the field value. The format strings are set
as subtags enclosed in the log tag; the format strings are set in the text space. The format
for the access log is set using the <access-fmt> subtag; the format of the error log is set
using the <error-fmt> subtag.

The default access log format is as follows:


http://yxorp.sourceforge.net/

%clientip %clientport %nsstart %realserver \"%method %protocol%host%uri\"
%statuscode %fromclient %toclient %toserver %fromserver %clientreghdr
%clientrsphdr %serverreghdr %serverrsphdr %elapsed

The default error log format:

%requestnumber %clientip %clientport %nsstart %realserver \"%method http://

%host%suri

" %statuscode %fromclient %toclient %toserver %fromserver

%clientreghdr %clientrsphdr %serverreghdr %serverrsphdr %elapsed %rejectreason

The following tokens are available for formatting:

Token
%clientip
%clientiplookup
%clientport
%method

Youri

9%ohost

%targetserver

Yonsstart

%onsend

%logi

%requestnumber

Yoprotocol

%statuscode
%fromclient
%toclient
Y%fromserver
%toserver
%clientreqhdr
%clientrsphdr
%serverreqhdr
Yoserverrsphdr
Y%elapsed
%rejectreason

Yorealserver

Field value

Client IP number

Resolved name of client IP number
TCP port number on client

Method name

Uri (after translation by rule programs)

Host name of server, taken from the Host: header (optionally
modified by rule programs by assigning the Host: variable)

Host name of server, taken from the Host: header (optionally
modified by rule programs by using the settargetserver() function
call)

Time stamp at start of request
Time stamp at end of request
Ordinal number of log entry as counted by request logging module

Ordinal number of request, as counted by listener at start of the
request

Returns “http://” or “https://” according to the current protocol.
Same as %clientprotocol.

HTTP status code

Total bytes received from client

Total bytes sent to client

Total bytes received from server

Total bytes sent to server

Number of bytes in headers received from client

Number of bytes in headers sent to client

Number of bytes in headers sent to server

Number of bytes in headers received from server

Wall clock time it took to process the request, in milliseconds
Text string containing the reason why a request was rejected

The real server that the request was forwarded to. If the request
was served from a cache area, the name of the area is set instead.



Token Field value

%clientprotocol Returns “http://” or “https://” according to the current protocol used
between yxorp and the client

Yeserverprotocol Returns “http://”” or “https://” according to the current protocol used
between yxorp and the server

Reconfiguring

All of the log settings may be reconfigured. If the log file names are changed in the new
configuration, the active log file will be closed, and a new file with the changed name will be
created (as yxorp tries to log a message, so using this mechanism to rotate logfiles must be
used with caution since yxorp may not have closed the logfiles immediately upon
reconfiguring).

Example

The following example will create three log files, and set the formatting for the access log
and the error log:

<log accesslog="/var/log/yxorpaccess” errorlog="/var/log/yxorperror”
tracelog="/var/log/yxorptrace”>

<access-fmt>%clientip %nsend %method %host %uri %statuscode
</access-fmt>

<error-fmt>%clientip %rejectreason”</error-fmt>
</log>
The following example, assuming a config snippet generated by a script running from cron,
will “rotate” the access log file to a new, daily log file:

<log accesslog="/var/log/yxorpaccess.2004-Feb-29" />

Configuring request detail logging

The requestdetaillog is a log file, defined in the <log> tag described above. It can be used to
log details about each request, or only about requests that ended in error. The request or
status line (the first line in an HTTP message) and the headers can be logged in each stage
of Yxorp's processing.

The <requestdetaillog> tag takes the following attributes:

Attribute Format

log number  Master flag; if set to 0, no requestdetaillog actions are
taken.

logerror number  If set to 0, all requests are logged to the requestdetaillog.

If set to non-zero, only requests for which the end status
is in error are logged to the requestdetaillog.

logreceivedrequest number  If set to non-zero, received request data (request line and
message headers) is added to the requestdetaillog. The
hex dump may also contain the first part of the request
entity, depending on what is in the buffer at the time.



Attribute Format

logtransmittedreque number
st

logreceivedresponse number

logtransmittedrespo number
nse

logfinalinternaldata number

The following bitmasks apply:
e 0x01: Text dump
+  0x02: Hex dump

+ 0x04 : State of the internal data structures at
time of dump

If set to non-zero, transmitted request data (request line
and message headers) is added to the requestdetaillog.
The hex dump may also contain the first part of the
request entity, depending on what is in the buffer at the
time.

The following bitmasks apply:
* 0x01: Text dump
+  0x02: Hex dump

«  0x04 : State of the internal data structures at
time of dump

If set to non-zero, received response data (status line and
message headers) is added to the requestdetaillog. The
hex dump may also contain the first part of the response
entity, depending on what is in the buffer at the time.

The following bitmasks apply:
¢ 0x01: Text dump
*  0x02: Hex dump

+ 0x04 : State of the internal data structures at
time of dump

If set to non-zero, transmitted response data (status line
and message headers) is added to the requestdetaillog.
The hex dump may also contain the first part of the
response entity, depending on what is in the buffer at the
time.

The following bitmasks apply:
e 0x01: Text dump
+  0x02: Hex dump

«  0x04 : State of the internal data structures at
time of dump

If set to non-zero, a formatted copy of some of Yxorp's
internal data structures are addedd to the
requestdetaillog.



Reconfiguring

All flags in the requestdetaillog tag may be reconfigured.

Example

The following example shows how to configure the request detail log to log the data received
for requests that ended in error:

<requestdetaillog log="1" logerror="1" logreceivedrequests="1" />

Configuring a configuration listener

The configuration listener is a special interface into an active Yxorp daemon. It allows the
configuration of Yxorp to be changed while Yxorp is active.

Normally, the configuration listener should be bound to IP address 127.0.0.1 and port 7780.
This is done by setting the <configlistener> tag in the configuration file. Setting the IP
address to 127.0.0.1 is recommended, because of security reasons; only change this if you are
sure you know all the consequences.

You can also choose not to run a configuration listener; this is inherently more secure, but
also less flexible. If no configuration listener is active, the yxorpconfig command can not be
used to reconfigure Yxorp, or to read the current configuration; also, all other commands
like yxorpclientstate and yxorprealserver will not work without a configuration listener.

Disable the configuration listener by omitting the <configlistener> tag, or by explicitly
setting the port number to zero.

There can only be one configlistener in an Yxorp daemon; any attempt to define more than
one configlistener will overwrite the previous configuration attributes.

The <configlistener> tag takes the following attributes:
Attribute Format

port number port to bind to; default is 0. Setting the port number to 0
disables the configuration listener.

ipaddress  ipaddress IPv4 address to listen on; default is 127.0.0.1

Reconfiguring

It is not possible to reconfigure the configlistener.

Example

The following example shows how to configure the configuration listener to use IP address
127.0.0.1 and port number 7780:



<configlistener ipaddress="127.0.0.1" port="7780" />

Configuring threads

Yxorp uses a thread pool for processing the requests. The behaviour and size of the thread
pool can be configured by the <thread> tag.

The <thread> tag takes the following attributes:
Attribute Format

initial number The number of threads that Yxorp will create at start

minfree number If less than this number of threads are free to process a
request, Yxorp attempts to create a new thread.

max number Upper limit to the size of the thread pool.

startatoverr number If the minfree threshold is reached, this amount of new threads

un will be started. The default and minimum is 1; the maximum is
10.

actual number (display only) Actual number of active threads.

actualfree number (display only) Actual number of free (waiting) threads.

Not all threads in an Yxorp process are counted for the thread pool size: the debug/log
system, and each listener have their own dedicated thread that is not part of the thread
pool. Because of this, the number of threads or LWPs reported by operating system
commands may be higher than the value of max or actual.

In general, and assuming that clients ie. browsers behave according to RFC2616, each client
can use two parallel sessions to retrieve content. During the handling of requests, and for
some time after that according to the session timeout settings, this translates into two
active threads for each client. The number of actual threads you need depends very much on
the 'think time' of your users, that is, how long users will stay on the same web page. If this
is shorter than the session timeout settings, each user will use up to two threads. If the
'think time' is longer than the session timeout settings, the actually needed number of
threads will be lower. The timer settings that influence this are readfromclienttimeout,
sslclientreadtimeout, and completerequesttimeout.

The defaults should suffice for normal web sites. If you run a heavily loaded site (ie. serving
hundreds of concurrent sessions) you may have to increase the max attribute or lower the
timer settings. Be careful about changing these settings though.

Reconfiguring

It is possible to reconfigure threads; however, reducing 'max' will not lower the number of
active threads. Threads do however stop after having been idle for a configurable time.



Example

<threads initial="20" minfree="2" max="100" />

Configuring security

Yxorp runs with reduced privileges on Solaris and Linux. Normally, binding to a port
number lower than 1024 requires the process to run as root. Yxorp can release the root
privileges and set parts of the process to run as a lower-privileged user. The way this works
has significantly changed since version 0.19, it is now implemented using capabilities
(Linux) and privileges (Solaris). For other platforms, you will either have to run Yxorp as
root, or use non-privileged ports only.

For both Linux and Solaris, all privileges except the ones necessary for Yxorp are released.
For Linux, the only remaining privilege is “cap_net_bind_service”; for Solaris, it is
“PRIV_NET_PRIVADDR”. In this way, Yxorp does not need to run as root to be able to open
low sockets (ie. <1024).

Besides this, it is also possible to change the userid and group that Yxorp will run as; this
has the added effect of securing access to the file system. Because of privileges dropped on
Solaris and Linux, Yxorp will not have omnipotent file system access even when it runs as
root.

Other operating systems (like FreeBSD, NetBSD, MacOS etc) currently have no working
privilege model. On those operating systems Yxorp needs to run as root to be able to bind to
ports lower than 1024. It is still possible to have Yxorp run as non-root on those operating
systems, but all listeners will need to bind to high ports.

Another security setting is “chroot”; if this is set, yxorp will change root to the specified
directory. Within the jail, you will need the following:

File name or description

/dev/random A source of entropy for SSL.

/dev/urandom If your build includes SSL support, Yxorp needs read access
to at least one of these.

/dev/null Yxorp needs /dev/null to run as a daemon.

<ssl certificates> The certificates for your SSL-enabled listeners. Yxorp needs

read access to these files. Make sure that you do not allow
world access to these files!

Normally, yxorp tries to find this file within the <$sysconfdir>
directory that was set during configure (ie. /usr/local/etc).

<log files> Any of yxorp's log files you specified in your configuration.
Yxorp needs permission to create and write these files.

You do not have to copy any dynamic or static libraries into the jail (as yxorp will already
have the handles open before changing to the jail), but for OpenSSL you will need to make a
source of entropy available within the jail (usually /dev/urandom or /dev/random). Also, the
certificate must be accessible within the jail.



Many people insist on statically linking applications that will run inside a chroot jail. This is
not in our view preferable, because you will need to relink the executables any time a bug fix
is applied to any of the libraries, and you will need to do this by hand. Chances are very big
you will forget this, and thus remain vulnerable for longer than needed. Besides, dynamic
libraries were invented for a reason.

The <security> tag takes the following attributes:
Attribute Format

user number/strin The numerical userid or userid from /etc/passwd that will be
g set

group number/strin The numerical group or group name from /etc/group that will
g be set

chroot string chroot to the specified directory just after reading the

configuration file. The path must be complete (i.e. start in the
root of the file system).

Reconfiguring

It is not possible to reconfigure security settings.

Example

<security user="65535" group="65535" />

<security user="nobody” group="nobody” />

Configuring basic authentication

Yxorp can store a table of basic authentication credentials in its configuration. Basic
authentication credentials can also be retrieved from LDAP, see the configuration sections
on <ldapserver> and <ldapsource> for more information.

Note that basic authentication is not very secure. To recover userid and password from the
encoded form is trivial. Generally, it is a good idea to enforce SSL in combination with basic
authentication; however, you should be aware that browsers cache or store the userid and
password, and some browsers even show the password in clear text in a configuration
window.

The <basicauth> tag takes the following attributes:
Attribute Format

realm string The realm. See also the first parameter on the
basic_auth_check function.

userid string The user name

passwd string The password

base64 string The encrypted form of userid and password (set either base64

or userid/passwd). Generated configurations from yxorp will
always contain the base64 form.



Attribute Format

remove number If nonzero, remove this base64 credential from the table.

Reconfiguring

It is possible to reconfigure all basic authentication settings.

Example

<basicauth realm="mystuff” userid="baas” passwd="notsosecure” />

Configuring digest authentication

Yxorp can store a table of digest authentication credentials in its configuration. Digest
authentication credentials can also be retrieved from LDAP, see the configuration sections
on <ldapserver> and <ldapsource> for more information.

Yxorp must be built with OpenSSL to support digest authentication.

Digest authentication is in theory much stronger than basic authentication. However, client
applications are known that do not correctly implement digest authentication. For this
reason, Yxorp currently does not currently enforce the nc parameter to be ever-increasing.
This severly limits the cryptographic strength of the algorithm.

The <digestauth> tag takes the following attributes:
Attribute Format

realm string The realm. See also the first parameter on the
digest_auth_check function.

userid string The user name

passwd string The password

hal string The encrypted form of userid, realm, and password (set either

realm and hal or realm, userid and passwd). Generated
configurations from yxorp will always contain the hal form.

remove number If nonzero, remove this digest authentication credential from
the table.

Reconfiguring

It is possible to reconfigure all digest authentication settings.

Example

<digestauth realm="mystuff” userid="baas” passwd="moresecure” />

Configuring ldap servers

Yxorp can access LDAP servers for retrieving information, for example to support the



basic_auth_check() and digest_auth_check() functions. Yxorp must be built with ldap to
support this.

LDAP support associated with basic authentication is considered stable functionality as of
Yxorp version 2.33 and later. Support of digest authenticate with LDAP however is not; the
way Yxorp implements that will change in later versions.

The <ldapserver> tag takes the following attributes:

Attribute Format

id string The name by which this ldapserver is referred to (usually from
an ldapsource definition).

hostname string The name of the host that the ldap server runs on

port string The port on which the ldap server listens

binddn* string The dn (distinguished name) to use in binding to the ldap

server. Only required for digest authentication support, not
relevant for basic authentication support.

passwor string e password to use in the bind operation. Only required for

d* tri Th dt in the bind tion. Onl ired f
digest authentication support, not relevant for basic
authentication support.

maxsessions* number The maximum number of sessions that can be concurrently
open to this ldap. This should be equal to the maximum
number of threads you are running. Only required for digest
authentication support, not relevant for basic authentication
support.

* in the table above signifies attributes that are part of the experimental support of digest
authentication.

Reconfiguring

It is possible to reconfigure all ldapserver settings; however, existing sessions to an ldap
server are not taken down on reconfiguration.



Example

// for basic authentication support
<ldapserver
id="1ldapserverl”
hostname="1ocalhost”
port="389"
/>

// for digest authentication support

<ldapserver
id="1ldapserver2”
hostname="1localhost”
port="389"
binddn="cn=root,dc=example,dc=com”
password="secret”
maxsessions="100"

/>

Configuring ldap sources

An ldapsource is an abstraction layer on top of ldapservers to set retrieval parameters with.
Yxorp must be built with ldap support to enable the <ldapsource> tag; otherwise, the
<ldapsource> tag will be rejected from the configuration.

LDAP support associated with basic authentication is considered stable functionality as of

Yxorp version 2.33 and later. Support of digest authenticate with LDAP however is not; the
way Yxorp implements that will change in later versions.

The ldapsource tag can be used with the basic_auth_check function; in this case, the settings
on the ldapsource tag will be used to perform a simple bind to the ldap server. If however a
digest_auth_check function is used, an administrative bind will be done to the ldap server
using the DN set on the <ldapserver> tag. This administrative connection will then be used
to retrieve the password for the userid retrieved from the digest_auth_check from the ldap
server. For this to work, the ldap server needs to store the user passwords as clear text.

The <ldapsource> tag takes the following attributes:

Attribute Format

id string The name by which this ldapsource is referred to.

serverid string The serverid maps to a ldapserver definition to be used for this
ldapsource

bindfmt string A string containing exactly one occurrence of “%s”. The

username as passed from a basic authentication dialog will be
substituted into this “%s”; the resulting string will be used to
perform a simple bind to the ldap server mapped by the
serverid attribute. The result of this simple bind will be passed
back to the basic_auth_check function; also, the result will be
cached according to the cachetime setting.



Attribute Format

cachetime number Number of seconds that the result of a simple bind to the ldap
is cached by Yxorp. The minimum setting is 10 seconds.

base* string The base DN to be used for search operations

scope* string The scope to be used for search operations. Defined values are

” «

“base”, “onelevel”, and “subtree”.

* in the table above signifies attributes that are part of the experimental support of digest
authentication.

Reconfiguring

It is possible to reconfigure all ldapsource settings.

Example

// for basic authentication

<ldapsource
id="1ldapsourcel”
serverid="1dapserverl”
bindfmt="cn=%s,ou=People,dc=example,dc=com”
cachetime="60"

/>

// for digest authentication

<ldapsource
id="1ldapsourcel”
serverid="1dapserverl”
base="ou=People, dc=example,dc=com”
scope="subtree”

/>

Configuring cache areas

To control the caching processes, Yxorp uses the concept of areas. A request that is eligible
for caching is mapped to a “cache area”, which can be defined as a set of attributes to control
how that request is cached. Cache areas are configured through the <cachearea> tag.

The <cachearea> tag takes the following attributes:
Attribute  Format

area string The name of the cache area

maxage number The maximum time in seconds that an entity is cached. After
this time, it will not be used for generating cached responses,
and it will be removed from the cache.

maxobjectsi number The maximum size of an object that is accepted into this cache
ze area. Larger objects will not be stored, and thus, no caching
will be done for these.



Attribute Format

refreshage  number If an object is older than this time in seconds, the first
reference will not be served from the cache but directed to the
real server. The entity returned from the real server will be
stored in the cache, thus effectively refreshing the cache. This
mechanism is intended to keep the cache consistenly fresh, but
limit the maximum load on the real servers.

Reconfiguring

It is possible to reconfigure all cachearea settings.

Example

<cachearea area="area51” maxage="120" maxobjectsize="128000" />

Configuring global settings

Global configuration settings are (as the name implies) global within a daemon (and thus
govern all processing for all listeners).

The default values for the settings are set to reasonable defaults that should work well in
almost all circumstances. In general, you should probably not make any changes to the
defaults, with a few exceptions that are documented elsewhere in this document. If you do
decide to make changes, make sure you understand what it is you are changing, and test
what the effects are before deploying to production systems.

The <globalconfiguration> tag takes the following attributes:

Attribute Format

maxchunksize number In chunked content processing, the maximum
size of a chunk that will be accepted. A larger
chunk will lead to the request being rejected.

maxchunkheaderlength number In chunked content processing, the maximum
chunk header length that will be accepted. If a
header is longer than this, the request will be
rejected.

maxchunkheaderreadretries number The maximum number of retries that will be
done in trying to read a complete chunk header,
in chunked header processing. If this amount of
retries does not produce a valid chunk header,
the request will be rejected.

maxserverconnectionattempts number The maximum number of times connection to a
server will be retried. If applicable, load
balancing is applied, so the first connection
attempt may be to server A, the next attempt to
server B. Setting this to a higher number may
lead to high response times if servers are



Attribute

writetoclienttimeout

readfromclienttimeout

sslclientaccepttimeout

sslclientreadtimeout

sslclientwritetimeout

sslclientclosetimeout

sslserverconnecttimeout

sslserverreadtimeout

Format

number

number

number

number

number

number

number

number

unavailable. Also see connectservertimeout.

The time (in milliseconds) yxorp will wait for a
write to a client to succeed. Note that normally a
write will succeed almost instantaneously, since
Unix processes the writes asynchronously; the
actual meaning of this timer is more along the
lines of “wait this long for buffer space to become
available”.

If this timer expires, the request will be rejected.

The time (in milliseconds) yxorp will wait for
data to arrive from a client.

If the timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total for the SSL
connection between a client and yxorp to be
accepted. This includes handshaking, selecting a
cypher algorithm, and exchanging keys.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to read data from
the SSL connection between a client and yxorp.
This may include a key renegotiation.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to write data to the
SSL connection between a client and yxorp. This
may include a key renegotiation.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to close the SSL
connection between a client and yxorp.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total for the SSL
connection between yxorp and a server to be
accepted. This includes handshaking, selecting a
cypher algorithm, and exchanging keys.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to read data from
the SSL connection between yxorp and a server.



Attribute

sslserverwritetimeout

sslserverclosetimeout

maxrealserverconnectfailuresb
eforeoutservice

connectservertimeout

writetoservertimeout

readfromservertimeout

completerequesttimeout

Format

number

number

number

number

number

number

number

This may include a key renegotiation.
If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to write data from
the SSL connection between yxorp and the
server. This may include a key renegotiation.

If this timer expires, the request will be rejected.

The time (in milliseconds) that the SSL
exchanges may take in total to close the SSL
connection between yxorp and a server.

If this timer expires, the request will be rejected.

When this many subsequent failures occurred
connecting a server, it is set out of service. If
part of a virtualserver load balancing group, it
will thereafter be considered out of service (and
only be scheduled if the wakeup algorithm is
active). For servers that are directly mapped to
real servers, the out of service attribute is
ignored.

(milliseconds) Wait this long for a connection to
a server to complete. Setting this to a longer
time also has the effect of causing longer
response times if one or more servers in a
virtualserver load balancing group becomes
unavailable.

See also maxserverconnectionattempts.

(milliseconds) Wait this long for a write to a
server connection to succeed. See
writetoclienttimeout above.

If this timer expires, the request will be rejected.

(milliseconds) Wait this long for data to arrive
from a server connection.

If this timer expires, the request will be rejected.

(milliseconds) Wait this long before a request
must be completely received. A request is
considered completely received in this context
when both the start-line and message-headers
have been read, or, less formally, when the
<CR><LF><CR><LF> after the last request
header has been read.

If this timer expires, the request will be rejected.



Attribute

tunnelwritetoservertimeout

tunnelwritetoclienttimeout

tunnelconnecttimeout

clientstatecleanupinterval

clientstatecleanupmaxage

requestdvarvectorsize

Format

number

number

number

number

number

number

(milliseconds) Wait this long for a tunnel buffer
to be written to the server connection.

(milliseconds) Wait this long for a tunnel buffer
to be written to the client connection.

(milliseconds) Wait this long for a tunnel
connection to be established.

(seconds) Time between runs of the client state
cleanup process. Don't set too short, because the
cleanup process locks the client state table, and
frequent locking decreases throughput. Also
don't set too long, because then the amount of
work increases and the table is locked longer.

(seconds) Time a client state is maintained,
counting from the last request referencing this
state.

If you are using sticky load balancing, you may

need to increase this time to the maximum time
you want the sticky mapping to be remembered
for idle sessions.

The size of the dvar vector that is allocated for
each request. This number should be set
carefully, since the dvar table will not expand.
The number should be large enough to
accommodate all rule programs, built-in
variables, and headers (both from client and
from server), but it should also be small enough
not to waste memory. Also consider that due to
the way the dvar table works, a certain amount
of free space increases the likelyhood that a dvar
entry will be found quickly, whereas setting the
vector size small will increase the likelyhood
that a partial table scan will be necessary to
locate a dvar entry.

To improve efficiency, the number you set here
will be rounded up to the next higher prime
number.

Note that if this number is set too small Yxorp
will not be able to store information about the
request; this may cause the request to be
rejected. A suggested minimum is 97; when
tuning, set to at least 2 times the actual dvars
you need (counting built-ins, headers, and
variables you use in rule programs, including
results from capturing regexpses).



Attribute

clientstatedvarvectorsize

maxdvarchunksize

maxrcmpchunksize

entitybuffertotalsizelimit

Format

number

number

number

number

The size of the dvar vector associated with a
client state. In this dvar vector, the mapping
between virtual and real servers is kept for
sticky load balancing. The dvar vector can also
be accessed from rule programs.

To improve efficiency, the number you set here
will be rounded up to the next higher prime
number.

Note that if this number is set too small Yxorp
will not be able to store information in the client
state; this may cause Yxorp to be unable to do
sticky load balancing or other functionality that
uses clientstate dvars. A suggested minimum is
1; when tuning, set to at least 2 times the actual
dvars you need (counting sticky-enabled
virtualservers in the same cookie domain, and
clientstate variables you use in rule programs).

The maximum size of one memory allocation
“chunk” in a dvar vector. In practice, this is the
maximum size that the value of a variable can
ever have; requests for storage over this size are
rejected and cause the process requiring the
variable to fail.

The default is set to 16 M, which should be
adequate for normal use. If you need to tune
this, you are probably doing something that
Yxorp was not meant to do.

See also maxrecmpchunksize.

The maximum size of one memory allocation
“chunk” used for the rule vm. In practice, this is
the maximum size that the value of a variable
can ever have; requests for storage over this size
are rejected and cause the process requiring the
variable to fail.

The default is set to 16M, which should be
adequate for normal use. If you need to tune
this, you are probably doing something that
Yxorp was not meant to do.

See also maxdvarchunksize.

The total amount of memory that Yxorp can use
for entity buffers.

Yxorp uses these buffers to temporarily store
HTTP entities that are subject to rule processing



Attribute

entitybufferinitial

entitybufferextend

entitybuffermaxobjectsize

Format

number

number

number

(ie. inboundentity and outboundentity rules) and
caching. If you don't use these rule types, and
don't use caching, you do no need entity buffers.

To determine the number you need if the default
is insufficient, consider the average size of
entities that need to be buffered, and the
maximum number of threads you are using.
Multiply these, and set the limit to twice that
amount to be on the safe side.

If yxorp runs out of entity buffer space, requests
subject to rule processing will be rejected, and
requests that would be eligible for caching will
not be cached.

As a rule of thumb, do not define more than a
quarter of the physical memory that is available
in your system and not used in any other
processes. If you exceed this, paging may occur
to the point of greatly reducing system
throughput. If you don't need entity buffers,
leave this setting at it's default.

The initial size of an entitybuffer if the required
size can not be determined from the request or
response. This occurs if no Content-Length
header is present in a request or response,
which is generally the case with dynamically
generated content.

See also entitybuffertotalsizelimit and
entitybufferextend.

The number of bytes added to an entitybuffer if
it is allocated without knowledge of the required
size, and if the initial allocation (ie.
entitybufferinitial) is not sufficient. Since the
reallocation this causes is an expensive
operation, set entitybufferinitial to a value that
is sufficient for something like 80-90% of all
requests.

Setting to 0 prevents reallocation (and causes
requests that require a larger amount to fail).

See also entitybuffertotalsizelimit and
entitybufferinitial.

The maximum size of one entitybuffer, both for
fixed-length requests and variable length
requests (that are allocated through
entitybufferinitial and entitybufferextend).



Attribute

cachemaxobjectsize

cachetotalsizelimit

cachemaintenanceinterval

basicauthmaintenanceinterval

enabledheadergroups

enabledmethodgroups

pidfilename

clearthreadpoolgracetime

Format

number

number

number

number

string

string

string

number

Requests that require a larger buffer are
rejected (for inboundentity and outboundentity
rules) or not cached.

The maximum size of an HTTP entity that can
be cached.

The maximum size that the cache can use. If
this is exceeded, no new entries will be added to
the cache.

As a rule of thumb, don't set this to more than
half the physical memory that is available in
your system and not used in any other
processes. If you exceed this, paging may occur
to the point of greatly reducing system
throughput.

The time (in seconds) between runs of the
maintenance processes for the cache.

The time (in seconds) between runs of the
maintenance processes for the basic
authentication cache.

The header groups that are enabled. Available
groups are “std” which is always enabled, “dav”
for WebDAV related headers, and “msext” for
Microsoft extensions to WebDAYV. To enable
these groups, comma-separate the groups you
require.

The method groups that are enabled. Available
groups are “std” which is always enabled,
“rfc2616” for additional less-used methods
defined in rfc2616, “dav” for WebDAYV related
headers, and “msext” for Microsoft extensions to
WebDAYV. To enable these groups, comma-
separate the groups you require.

The filename for the pid file, as a complete path
starting in the root of the filesystem. Yxorp
needs to have its own directory to put the pid
file in, and the name of that directory must end
in “yxorp”, otherwise, Yxorp will refuse to start.

Default is “/var/run/yxorp/yxorp.pid”.

Yxorp will attempt to create the last directory in
the path if it does not exist. Also, Yxorp takes
care of setting file ownerships to the user and
group configured in the <security> tags.

(milliseconds) Time that Yxorp waits for threads



Attribute

closelogdaemongracetime

starterwaitforsignaltime

threadinactivitylimit

doclientheaderenabledchecks

doclientheaderlengthchecks

doclientheaderbufchecks

doclientheaderduplicatechecks

doclientheaderunknownchecks

Format

number

number

number

number

number

number

number

number

to finish after a stop command has been given.
After this time expires, threads will be forcibly
stopped to ensure orderly shutdown.

(milliseconds) Time that Yxorp waits for it's
internal log daemon to finish after a stop
command has been given. This allows the log
daemon to flush its buffers and ensure that
logging is complete.

(milliseconds) Time that the command starting
Yxorp waits for its daemonized child to become
active.

(seconds) Time a thread waits for work before
exiting. Thread resources are released after
being inactive for this length of time. Currently,
this comprises LDAP sessions maintained per
thread.

(default non-zero) If zero, Yxorp will not check if
headers are enabled for client. All headers that
are defined in Yxorp's table will be accepted
from a client.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
the length of headers received from a client.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
the contents of headers received from the client
against a table of allowed characters.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
headers received from the client for duplicates.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will accept from
clients any unknown header (ie. headers that
are not defined in Yxorp's header table). The



Attribute

doserverheaderenabledchecks

doserverheaderlengthchecks

doserverheaderbufchecks

doserverheaderduplicatechecks

doserverheaderunknownchecks

Format

number

number

number

number

number

unknown headers will be passed through
without any checking (regardless of other
settings). However, all known headers will be
checked as defined by the header table or by
other do[client | server]header settings.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check if
headers are enabled for server. All headers that
are defined in Yxorp's table will be accepted
from a server.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
the length of headers received from a server.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
the contents of headers received from the server
against a table of allowed characters.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will not check
headers received from the server for duplicates.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.

(default non-zero) If zero, Yxorp will accept from
servers any unknown header (ie. headers that
are not defined in Yxorp's header table). The
unknown headers will be passed through
without any checking (regardless of other
settings). However, all known headers will be
checked as defined by the header table or by
other do[client | server]header settings.

Do not set this to zero if you run Yxorp as a
security device; instead, change individual
header definitions to accommodate your needs.



Attribute

workdatadissectbufsize

workdatadissectwbufsize

maxlenrequesturi

maxlenheaderline

rewritelocationheader

renameonrotate

Format

number

number

number

number

number

number

(default 8192) The buffer size used to receive
requests in. A complete request (excluding
entity) must fit into this buffer; if not, Yxorp will
reject the request.

The part of the request that this applies to is
made up by the request line (method name, uri,
http version) and all headers, including the
terminating CRLF after each line and the CRLF
terminating the request. The entity (the data
retrieved by a request, or the data sent in by for
example a POST request) is not limited by this
buffer size.

Do not change this unless you really have
requests this big, and can not change them to
become smaller. Also note
workdatadissectwbufsize, which must be defined
larger than workdatadissectbufsize.

(default 10240) Internal work buffer. Must be
set bigger than workdatadissectbufsize
(normally at least 2K over this size).

Do not change this unless you have changed
workdatadissectbufsize.

(default 2048) The maximum size of the URI
that is received by Yxorp. This size includes any
parameter fields sent by clients (ie.

http:/www.example.com/some.cgi?
parameterl=valuel).

Requests with longer URI's will be rejected by
Yxorp.

(default 2048) The maximum length of any
header that Yxorp can process. Note that some
headers (eg. Authorization:, Referer:, Location:
may include URI's, and thus may become quite
long.

Requests with longer headers will be rejected by
Yxorp.

If nonzero (default), yxorp will rewrite Location:
headers coming from the server that contain an
absolute form URI to the domain name that the
request associated with the response originally
contained.

(default zero). If nonzero, yxorp will rename its
log files when rotating them. If zero, the files


http://www.example.com/some.cgi?parameter1=value1
http://www.example.com/some.cgi?parameter1=value1

Attribute

basicauthmaintenanceinterval

basicauthcachetime

generatexcache

viareportversionstringtoclient

viareportpackagenametoclient

viareporthosttoclient

viareportversionstringtoserver

viareportpackagenametoserver

viareporthosttoserver

workerthreadstacksize

Format

number

number

number

number

number

number

number

number

number

number

will just be closed and then reopened.

(default 30) Number of seconds between runs of
the basic authentication maintenance process.

(default 60) Number of seconds that credentials
added by use of the basicauth_add function are
accepted as valid. After this time, the entry may
still be present in the basicauth table; the
credentials will be removed on first reference
after the time elapsed, or by the next basic
authentication maintenance process.

(default nonzero) If nonzero, Yxorp will generate
X-Cache headers if serving from a cache was
applicable to this request. If serving from a
cache was not possible, no header will be
generated irrespective of this setting.

If zero, do not report the version string in Via:
headers sent to the client.

If zero, do not report the package name in Via:
headers sent to the client. Irrelevant if
viareportversionstringtoclient is nonzero.

If zero, do not generate a Via: header to send to
the client. Irrelevant if
viareportversionstringtoclient or
viareportpackagenametoclient are nonzero.

If zero, do not report the version string in Via:
headers sent to the server.

If zero, do not report the package name in Via:
headers sent to the server. Irrelevant if
viareportversionstringtoserver is nonzero.

If zero, do not generate a Via: header to send to
the server. Irrelevant if
viareportversionstringtoserver or
viareportpackagenametoserver are nonzero.

(default zero) If nonzero, the value defined here
will be used to override the platform's default for
the stack size of a worker thread. The stack size
should not be defined smaller that 128000.

This setting should only be used if no
alternatives exist, and the number of threads
required consume all available virtual memory.
Normally, either the available virtual memory
should be increased (ie. ulimit -v) or the defined
stack space should be lowered (ie. ulimit -s).



Attribute Format

Note that the ulimit command only applies
within the shell in which the command was
issued; for ulimit to have effect, it must either be
included in the script used to start yxorp, or be
issued manually before yxorp is started.

statecookiename string  This string will be prepended to the name of the
cookie variable that Yxorp will set if it needs to
track clients. The special value of “(auto)”
derives a unique name from the hostname that
Yxorp runs on.

localhostname string The string defined here will be used in reporting
the host name of the system that Yxorp runs on;
for instance in X-Cache: and Via: headers. The
default special value of “(auto)” can be used to
derive the name from the host name as reported
by the operating system; or any other name can
be configured.

The method table

In the globalconfiguration section is the table of accepted methods. The header table can be
changed by including “<method>" tags in the globalconfiguration section.

By default, only a restrictive set of methods consisting of “GET”, “HEAD”, and “POST” is
active; but many more methods are defined. These can be enabled with the
“enabledmethodgroups” setting in the global configuration.

The <method> tag takes the following attributes:
Attribute Format

id string  The name of the method, as it would appear in a request.
Yxorp processes this value case-insensitively.

enable number Whether or not this method is enabled. Remember that a
method must also be in an enabled method group to be active.

inboundentity number If non-zero, Yxorp expects an entity to be sent client-to-server
with this method.

outboundentity number Ifnon-zero, Yxorp expects an entity to be sent server-to-client
with this method.

cacheable number If non-zero, cache processing is enabled for this method. This
should only be set to 1 for GET and HEAD; caching is not
defined by rfc2616 for other methods. Changing this attribute
from the provided defaults may cause undesired effects.

methodgroups  string  Defines to which method groups this method belongs.
Recognized values are “all”, “rfc2616”, “dav”, and “msext”.
Refer to enabledmethodgroups in globalconfig.



The header table

Also in the globalconfiguration section is the table of accepted headers. Only headers that
appear in this table are processed by yxorp, or made available in the rule language. The
standard headers in RFC2616 are included by default. The header table can be changed by
including “<header>” tags in the globalconfiguration section.

The <header> tag takes the following attributes:

Attribute
id

xlateid

client

server

maxlen

check

allowduplicates

hop-by-hop

Format

string

string

number,
(“reject”

“ignore”)

number,
(“reject”
I

“ignore”)

number
(43
[“

ignore”]

string,
(“reject”
|

“ignore”)

number,
(“reject”
|

The name of the header, as it would appear in a request. Yxorp
processes this value case-insensitively. The name must include
a colon (':') as the last character.

The name of the header as it would appear in the rule
language. Normally, the only difference between the id and
xlateid are that '-' is changed to '_'; this is usually required
because the minus sign has a specific meaning in the rule
language.

If non-zero, this header is accepted from a client connection. If
0, the request is rejected if “reject” is set, or the header is
discarded if “ignore” is set. Reject is default.

If non-zero, this header is accepted from a server connection. If
0, the request is rejected if “reject” is set, or the header is
discarded if “ignore” is set. Reject is default.

The maximum length of this header line (so including the
header name itself). If this length is exceeded the request is
rejected, unless “ignore” is set, in which case the header is
discarded.

” .

Takes the values “none”, “numeric”, “rfc2616-text”, and
“reduced”; this sets the character set that the header will be
checked against. If characters exist in the header that are not
in the character set, the header will either be discarded or the
request will be rejected, according to the reject setting for the
header.

“none” means no checking will be performed; “rfc2616-text” sets
the character set to the set described in RFC2616 (i.e. 7-bit
ASCII without the control characters); “reduced” is a subset of
rfc2616-text, in which most non-alphanumerical characters
have been removed; “numeric” is the set of characters between
0 and 9.

Whether or not multiple occurrences of this header are allowed
within a single request or response. If 0, the request is rejected
if “reject” is set, or the header is discarded if “ignore” is set.

“ignore”) Reject is default.

numeric

As defined in rfc2616, some headers have meaning only on one



Attribute Format

session. Yxorp base code controls the values of these headers.
This attribute should not be changed.

folding numeric As defined in rfc2616, a gateway may decide to combine
headers with the same name into one, if the header value is
composed of a comma-separated list. Setting the folding
attribute to “1” enables this.

hdrgroups string Defines to which header groups this header belongs.
Recognized values are “all”, “dav”, and “msext”. Refer to
enabledheadergroups in globalconfig.

The status code table

In the globalconfiguration section is the table of status codes. The table can be changed by
including “<statuscode>” tags in the globalconfiguration section.

By default, all status codes in rfc2616 and rfc2518 (WebDAYV) are defined. You can add to
these, or change the standard reason texts with the codes for your amusement.

The <method> tag takes the following attributes:
Attribute Format

id number The numeric status code.
reason string The textual explanation of the status code
Reconfiguring

All global settings can be reconfigured. However, header, method, and status code entries,
once they are created, may be modified but not completely removed.

Example

The example below sets the global configuration values for clientstatecleanupmaxage to 900
seconds. The header table is updated with the (custom) header “Example:”, which will be
called “bad_example:” in the scripting language, is accepted from a client but not from a
server; the maximum length is 1 byte, and the entire request will be rejected if this request
is overlength, has any characters in it outside of the reduced set, or appears multiple times
in the request.

The status code of “200” is changed from it's default “OK” to say “Yo”.



<globalconfiguration
clientstatecleanupmaxage="900"
>
<header id="Example”
xlateid="bad example”
maxlen="1, reject”
client="1"
server="0, ignore”
check="reduced, reject”
allowduplicates="0, reject”
/>
<statuscode id="200" reason="Yo">
</globalconfiguration>



Rule language reference

Introduction

The rule language uses a style similar to C. It works differently though. The language has
its own data types and statement constructions that are specifically tailored to dealing with
requests and responses in a proxy context.

Some of the most obvious peculiarities when compared to a 'normal’ programming language
are:

There is only one data type: a sequence of characters terminated by a binary zero (a
'string").

Literals must be enclosed in double quotes, unless each character is a number. There is,
however, no difference in how the literal is stored: Numbers are represented in exactly
the same way as strings. The handling of numbers is not especially strong; Yxorp was not
designed to do number crunching.

Truth values are represented by an empty string for false, and a non-empty string for
true. The virtual machine and the built in functions tend to return true as a string
containing “T”.

Variables are not declared; the parser will automatically declare variables 'on the fly'. In
general, if a variable is referenced in any way, it is created. Reading a non-existent
variable will result in an empty string.

Variable names are case insensitive.

Variable names may include a colon (':'). A variable name ending in a colon is used for
variables containing header values; creating (i.e. referencing) a variable name ending in
a colon causes Yxorp to create a HTTP header with the tag set to the variable name, and
the value set to the variable's value.

Variable names may not contain the minus ('-'). This is very awkward — especially
because several header names contain a minus, and thus need to be translated.
Normally, the default translation for a minus is an underscore ('_') and vice versa. This is
default translation is done automatically for all header-type variables (those ending in a
colon) that have no predefined translation (as in: defined in the table of headers in the
globalconfiguration).

Variables at runtime comprise the actual value and a number of attributes; these
determine the actual header name (which can be different from the variable name in the
rule), the order of the header in the list of headers to be sent, the maximum acceptable
length, etc.

It is not possible to define functions. Function calls are available, but all called functions
must be predefined, and their runtime must be included in the virtual machine.

Since version 0.21 it is possible to do a function-call to another rule, but this functionality
is very limited. It is not (yet) possible to pass parameters, or retrieve a return value.

Statements

The language has the usual constructions for expressions and if-then-else statements. There



is only one statement that causes a loop: the 'foreach' statement, that takes the value of an
expression to control the loop. Specific to the task of processing requests and responses are
the whitelist and blacklist statements.

Variables

A variable consists of the following items:
» The variable name, as used in the program source
« The current value

» The 'original name'; this is the case-sensitive token used to generate the actual header
name.

The original name is not in any way dependent on the variable name; however, the
variables created by Yxorp for RFC-defined headers are almost the same as the original
names associated to the variables (an exception is the '-' character, which is replaced by
.

+ The order number; this is used to specify the header order in a request or response. As
some HTTP clients and servers are sensitive to the order in which headers are included
in requests or responses, Yxorp keeps track of the original order of the headers. During
processing of a request or response, Yxorp sets the order number of the first header in a
request or response to 10, incrementing by 10 for each next header.

« The variable's actual length.
« The variable's maximum length.
« A flag indicating if this variable has been truncated by the maximum length setting.

« A flag marking this variable as a request header, response header, or a header set for
rejecting requests.

« A count field; in case multiple instances (‘duplicate dvars' or 'dupvar') of a variable exist,
the base variable will have it's count field set to the highest sequence number of the set of
multiple instances.

The first variable will have it's name set to the base name; subsequent variables will
have a sequence number suffixed to the base name, where the sequence number starts at
1 for the first duplicate.

Normally, these variables are only referenced through a foreach statement.

Yxorp uses duplicate variables to accommodate the fact that many HTTP clients and

servers do not support header folding, as described in rfc2616. Headers are converted
into variables exactly as they are sent out by clients and servers; if a client sends two
header lines for the same header line, that is exactly how these will be represented as
header variables.

All variables and variable attributes may be referenced or modified in a rule program.
Variables can be directly accessed in the rule language; duplicate variables and attributes
can be accessed through function calls and rule language constructs.



Expressions and operator precedence

Because the rule language is typeless, expressions must be written carefully. Since the only
data type is a string, normal (numerical) comparison operators only work as intended if the
data they operate on is exactly as expected. For instance,

i="one”;
if (i==1) {
}

will produce counterintuitive results, because the variable i can not be converted to a
number. The conversion will produce a default value (in the current versions most likely 0,
but this may change in some future version). The numerical == operator will use the
converted value, and return false.

Operators are grouped in precedence order in the usual way. Parentheses can be used to
make the ordering explicit, or to change the order. The following code snippets give some
examples of how this works:
1=2%3+1; // 1 is set to 7
1=2%*(3+1); // 1 is set to 8
if (errorcode==302 && uri -/index\.html/) // evaluate errocode==302,
// then evaluate uri -/index\.html/
// then do logical and

The operator precedence is according to the following table:

Operator Description Associativit
y

! logical not right
- caseless regular expression left
~/..f casefull regular expression left
*/ numerical multiplication, division left
+, - numerical addition, subtraction left
<, >, <=,>= numerical comparison left
=, == numerical comparison left
&& logical and left
I logical or left
= assignment left

Special variables
Some 'special’ variables are used by Yxorp. These are:

Name Use

uri generating requests. The uri actually sent to the server will be taken
from this variable. In the response stage, changing will have no effect



Name

method
rejectreason

statuscode

errorcode

errormessage

errorhtml
errortitle
errorrejectreason

rejectedheaders

_pattern

_[0-9]

Rule syntax

Use
but the changed value will be logged.

set to the method name. Use for reference only; changing this variable
will have no effect.

holds the text message explaining the reason that the Yxorp base code
rejected the request.

holds the status code reported by the server that processed the request

if set, the error code from this variable will be reported to the client
instead of the default (400 — Bad Request) in case of a rejected request

if set, the error reason string from this variable will be reported to the
client instead of the default (400 — Bad Request) in case of a rejected
request.

if set, html code contained in this variable will be inserted in the reject
message.

if set and errorhtml is not set, this variable defines the contents of the
<title> tag in a reject page.

if set and errorhtml is not set, this variable allows an override of the
default reason string in a reject page.

if Yxorp rejects a header (because it does not know this header, it is
overlength, contains illegal characters) the header name is added to
this variable.

Set to the last executed regular expression pattern within the context of
whitelist and blacklist statements. Not set for normal regular
expressions.

Set after the execution of a regular expression, depending on the
pattern. Only the variables needed to capture the data extraction from
the pattern are updated; other variables are untouched. Note that this
functionality is only available if you have PCRE included in the build.

This section is a reference of the rule program syntax.

Program

program:

statements

A program is the entirety of the source code in a single rule. A program (i.e. rule) is
comprised of one or more statements.

Since version 2.27, a rule may be empty (i.e. contain no statements).



Block

block: { statements }

A block is used to group one or more statements. As in many other languages, this is most
often used together with other statements, like the if statement.

Statement
statement: if (expression) statement
or if (expression) statement else statement
or foreach identifier (expression) statement
or whitelist identifier { list-elements } if-failed statement
or blacklist identifier { list-elements } if-failed statement
or expression
or block
or return

There are several statements, as listed here. Note that a block can contain statements; by
extension, a statement that contains another statement can also contain a block, and thus
more statements.

If

if: if (expression) statement
or if (expression) statement else statement

The if statement works exactly as you would expect. Note that the expression is expected to
result in a truth value. In rules, true is anything that is not an empty string; false is an
empty string.

The simple if statement (without else) can also be written as follows:

if-shorthand: '?' expression statement

Foreach

foreach: foreach identifier (expression) statement

The foreach statement implements loops. The expression in the statement is expected to
result in a space separated list. The foreach statement loops once for each element in the
list, setting the variable named in the identifier to the list element.

The foreach statement is supported by several function calls, that deliver lists of variable
names. In conjunction with the indirection operator “$”, this can be used to perform an
operation on each element in a list of variables.



Whitelist

whitelist: whitelist identifier { list-elements } if-failed statement
list-elements: -/regexp/ // simple, case insensitive
or ~/regexp/ // simple, case sensitive

or -/regexp/ : list-statement // complex, case insensitive
or ~/regexp/ : list-statement // complex, case sensitive
list-statement: statement + continue-list

The whitelist statement is used to easily check the value of a variable against a set of
regular expressions. If a match is found, the rest of the whitelist statement is skipped. If no
match is found, the statement following the if-failed keyword is executed.

All forms of list-elements may be used in the same whitelist. There are no syntax
restrictions to code formatting, but normal practice is to write each regular expression on its
own line.

If a regular expression is in the complex form, the statement following the regular
expression is executed before the normal whitelist action. In this context, a special
statement is available with the continue-list keyword. If the continue-list statement is
executed, the whitelist is resumed as if no match had occurred; this can be used to handle
exception cases.

Normally, the if-failed clause is used to stop execution, reject a request, etc; however, note
that this must be done explicitly, since the rule program language does not execute a default
action.

After the whitelist completes, the special variable _pattern is set to the last executed
pattern in a whitelist. This can be used to determine which pattern in the list matched. If
whitelists are nested, the fact that _pattern contains the last executed pattern, not the
successful match, may produce unexpected results.

Note that the scope in which _pattern is valid is different in a whitelist and a blacklist.

Blacklist
blacklist: blacklist identifier { list-elements } if-failed statement
list-elements: -/regexp/ // simple, case insensitive
or ~/regexp/ // simple, case sensitive
or -/regexp/ : list-statement // complex, case insensitive
or ~/regexp/ : list-statement // complex, case sensitive
list-statement: statement + continue-list

As with the whitelist statement, the blacklist statement is used to easily check the value of
a variable against a set of regular expressions. If a match is found, the statement following
the if-failed keyword is executed. If no match occurs, the if-failed clause is not executed.

All forms of list-elements may be used in the same blacklist. There are no syntax
restrictions to code formatting, but normal practice is to write each regular expression on its
own line.



If a regular expression is in the complex form, the statement following the regular
expression is executed before the normal blacklist action. In this context, a special
statement is available with the continue-list keyword. If the continue-list statement is
executed, the blacklist resumed as if no match had occurred; this can be used to handle
exception cases.

Normally, the if-failed clause is used to stop execution, reject a request, etc; however, note
that this must be done explicitly, since the rule program language does not execute a default
action.

After the blacklist executes, and within the context of the if-failed clause, the _pattern
special variable contains the pattern that last executed. If blacklists are nested, the fact that
_pattern contains the last executed pattern, not the successful match, may produced
unexpected results.

Note that the scope in which _pattern is valid is different in a whitelist and a blacklist.

Return
return: return
or return (expression)

The return statement ends the execution of the current rule program. Either version can be
used, but the value of the expression in a return statement is currently not used. This may
change in future versions.

Expression

The forms that an expression may have are listed below:



expression: call(parameters) // function call

or literal // value

or number // integral number value

or identifier = expression // assignment

or identifier // variable

or $identifier // indirect variable

or | expression // logical not

or expression && expression // logical and

or expression || expression // logical or

or expression + expression // numerical addition

or expression — expression // numerical subtraction

or expression * expression // numerical multiplication

or expression / expression // numerical division

or expression == expression // numerical compare equal

or expression != expression // numerical compare not equal
or expression < expression // numerical compare less

or expression > expression // numerical compare greater
or expression <= expression // numerical compare less or equal
or expression >= expression // numerical compare greater or equal
or (expression) // order expression priority
or identifier -/regexp/ // case insensitive regexp

or identifier ~/regexp/ // case sensitive regexp

Most expression forms are very common, and will not be detailed further.

Note that the numerical operations are only valid if the operands are actually numbers.

Identifier
identifier: letter { letter | digit | “ " | “:" }

Identifiers are used for variable names. They must start with a letter, and may contain
digits, underscores, and colons. Colons should only be used at the end, and signify that the
identifier points to a variable that is used to store the contents of a header.

Internally, identifiers are also used for function names, and will be used in future versions
to refer to other rules.

Numbers
number: digit { digit }

Numbers are formed as one or more digits. Decimal points (i.e. floating point numbers) are
not supported. Negative numbers are also not supported.

In the internal representation, all numbers are stored as strings. There is no difference
between 0 and “0” in the rule syntax.

Literals

v v

literal: { character }

Literals are values that are expressed directly in the source, as in “index.html”. Think of
them as strings.



Indirect variable

indirect variable : $identifier

An indirect variable contains the name of another variable; this variable's value is the value
of the expression form listed here. If the indirect variable is used without the indirection
operator '$', the variable itself is addressed; if the indirection operator is used, the value of
the variable points to another variable.

Regular expressions

regular expression: identifier -/regexp/ // case insensitive regexp
or identifier ~/regexp/ // case sensitive regexp

Regular expressions are dependent on the regular expression library you included (libc or
PCRE). With the posix-libc variant, only basic regexps are available; see your man page for
regcomp, regexec, or regex for a description of what you can do if you have this library.
Yxorp uses this variant only if PCRE could not be found on your system during
configuration. PCRE is highly recommended, as it has much more functionality, and more
consistent over different types of system. If you are not sure which library you have, check
with yxorp -V how your build is configured.

If you included PCRE, you can use most constructs that are possible in Perl. Extraction of
matched data from the original string is supported using the _0, _1, up to _9 special
variables. Note that as in Perl, only the variables that were actually necessary for storing
matched data are updated.

Both case-sensitive and case-insensitive variants of the regexp calls are available.
Respectively use a tilde '~' or a minus '-' to specify which you want to use. The regexp itself
must be enclosed in slashes. There is no implicit string begin or end added to the regexp; if
you want to match against the start or end of a string, use ” and $, respectively.

Function reference

basicauth_add(source, realm) - cache basicauth credentials

The basicauth_add function adds the basicauth credentials, presented in the Authorization:
header present in the current request, to the basicauth cache table. The entry will be valid
for a limited time only, and after it has become invalid it will be removed from the cache
table by the basicauth maintenance process.

The time the cached entry is valid is defined in the globalconfiguration item
basicauthcachetime.

basicauth_check(source, realm) - check basicauth
credentials

The basicauth_check function checks the credentials presented in the Authorization: header
with the current request with the basicauth table. If a match is found, either as a hard
coded entry or a cached entry, the function returns true; else, it returns false.



basicauth_getpass() - read password from basicauth
credentials

The basicauth_getpass function reads the password from the base64-encoded basic
authentication credentials passed with the current request.

basicauth_getuser() - read userid from basicauth
credentials

The basicauth_getuser function reads the userid from the base64-encoded basic
authentication credentials passed with the current request.

basicauth_reject(realm) - cause a 401 status code

The basicauth_reject function sets up the response for the current request to contain a 401
Unauthorized status code, including a WWW-Authenticate: header containing the realm as
set as a parameter to the function. Also, the reject reason is set to the text “basicauth401”.

Please note that it is generally required to explicitly end the rule execution after calling this
function, for instance by using the return statement. Failure to do so may have unintended
consequences if the status code, reject reason, or WWW-Authenticate header are changed by
further statements.

clearclientstate() — remove the client state

Synonym for killclientstate(). This function immediately removes all state information that
is kept in the clientstate table for the current request. If a state cookie was previously sent
to the client, no attempt is made to remove that state cookie from the client. A next request
from this client will either carry a state cookie value that does not map to a valid state or no
state cookie at all, and in both cases cause a new state to be created.

In many cases it is preferable to not immediately remove the state information. This
situation would for instance occur while running a rule for an URI for a logoff page, which
refers to other entities like graphics that still have to be retrieved. If in such a case the
state information was immediately removed, retrieving the graphics entities would cause a
new state entry to be created in the client state table. For this reason, there is also the
setclientstatefastage() function.

clearsticky() - remove a sticky mapping from the client
state

Synonym for killsticky(). This function removes the sticky mapping for the current value of
the Host: header (as exists at the time of the call, and possibly changed by assignments to
the Host: variable in this or previously run rules).

clientinrange(range) — check if client IP is in a range

clientinrange checks if the ip address that the client uses on this connection is part of the
IPv4 range that is passed. If the client address or the range can not be parsed, false will be



returned. Note that the client address can not be parsed if it is in IPv6 format, as would
happen if the request comes in from an IPv6 listener. The range must be in the format
a.b.c.d/x, where 1<=x<=32.

Typical use is as follows:
// check where the request comes from
if (clientinrange(127.0.0.1/32) {
// allow some things
} else if (clientinrange(192.0.2.0/24) {
// allow some other things

} else {
// don't allow things
reject(“sorry..."”);

}

clientinip6range(range) — check if client IP is in an IPv6
range

Similar to clientinrange, but for IPv6 addresses. The same limitations apply; IPv4 clients
coming in through an IPv4 mode listener can not be correctly processed by this function.

The range can be specified in the following formats:

XIXIXIXIXIXIXIX/Y // default

X::ixX/y // missing parts are set to zeros
::a.b.c.d/y // deprecated transitional form
(:ffff:a.b.c.d/y // ipv4 mapped ipv6 address

:1l/y // localhost

X
1l

4-digit hexadecimal

decimal, 1l<=y<=128
a.b.c.d = ipv4 address range

clientstate(type) — retrieve value from client state

clientstate retrieves values from the client state, depending on the string passed to it:
“toclient”: the number of bytes sent to the client on this clientstate (cumulative)
“toserver”: the number of bytes sent to the server on this clientstate (cumulative)
“fromclient”: the number of bytes received from the client on this clientstate (cumulative)
“fromserver”: the number of bytes received from the server on this clientstate (cumulative)
“hitcount”: the number of requests processed on this clientstate

“id”: the cookie value for this clientstate

concat(...) — concatenate

concat takes a variable number of arguments and concatenates them. The concatenated
string is returned.



contains(haystack, needle) - test if needle contains
haystack

contains is equal to the C function strstr. It takes two arguments; the first is the haystack;
the second is the needle. It returns a true if the needle is found in the haystack; false
otherwise. The comparison is case sensitive.

Note you can also use a regular expression; this is a lot more flexible. The contains function
will be deprecated in some future version.

contains_characters(string, list) - test if string contains
characters in list

contains_characters takes two arguments; the first is a string, which is tested against a list
(which is also a string, by the way). If any of the characters in the list occur in the string,
true is returned; false otherwise. The comparison between characters is case sensitive.

Note you can also use a regular expression; this is a lot more flexible. The
contains_characters function will be deprecated in some future version.

containscase(haystack, needle) - test if needle contains
haystack

containscase is equal to the C function strcasestr (if that exists on your platform). It takes
two arguments; the first is the haystack; the second is the needle. It returns true if the
needle is found in the haystack; false otherwise. The comparison is case insensitive.

Note you can also use a regular expression; this is a lot more flexible. The containscase
function will be deprecated in some future version.

digest_auth_check(realm, authentication source) - enforce
digest authentication

checks if valid digest authentication credentials are present in the request (i.e. the
Authorization: Digest header). If this header is not found, the request is rejected with a 401
status code (normally causing a browser to show the userid/password dialog). The realm
(text) is shown in this dialog window.

If the authentication credentials are present in the request, and if the authentication source
parameter has the exact value of “local”, the request credentials will be checked to the
internal digestauth table (see the decription of the <digestauth> table in the configuration
reference). The internal table uses the realm name to enable different realms to use
different userid/password combinations, or to enable a given user to be granted access to one
resource, but not another.

Versions earlier than 2.33 contained an experimental ldap interface associated with this
function call; this has been removed.

If the authentication was successful, true is returned; false otherwise (and the request
rejected). Note that execution of the rule program does not stop if the digest_auth_check
fails; this must be done explicitly; normally, a return statement should be used to prevent



execution of statements following the call to digest_auth_check. Typical use is as:

// check if digest authentication credentials are set
if (!digest auth check(“my-realm”, “local”)) {
return; // end the rule, so that the implicit reject
// from basic auth check is processed

}

// reach here if digest auth check was successful

enumerate_dupvar(variablename) - enumerate duplicate
variables

enumerate_dupvar takes, as its only argument, a string containing the name of a variable.
It returns a space separated string containing the real variable names of all variables in a
duplicate variable set. If the variable is singular (i.e. there are no other members in the
duplicate variable set) only the variable's name is returned.

enumerate_dupvar is especially useful when processing a header for which duplicates may
exist (i.e. multiple headers with the same name), as in the following example:

// the following is wrong:
if (Cookie: -/blabla/) {
. only the first Cookie header is checked

}
// since headers that may occur multiple times are stored in a dupvar group,
// as Cookie:, Cookie:0, Cookie:1l etc.

// check for all cookie headers
foreach i (enumerate dupvar("Cookie:")) {
if ($i -/blabla/) {
. the cookie contains “blabla”

enumerate_reqhdr() - enumerate request header variables

enumerate_reqhdr takes no arguments. It returns a space separated string containing the
variable names of all variables that have the REQHDR attribute set. Yxorp sets this
attribute for all variables it creates to represent request headers.

enumerate_rsphdr() - enumerate response header
variables

enumerate_rsphdr takes no arguments. It returns a space separated string containing the
variable names of all variables that have the RSPHDR attribute set. Yxorp sets this
attribute for all variables it creates to represent response headers.



equal(s, r) - compare two variables

equal performs a case sensitive comparison of two variables.

Note you can also use a regular expression; this is a lot more flexible. The containscase
function will be deprecated in some future version.

equalcase(s, r) — case insensitive compare of two variables

equal performs a case insensitive comparison of two variables.

Note you can also use a regular expression; this is a lot more flexible. The containscase
function will be deprecated in some future version.

getattr(variablename, attr) — test attributes of a variable

getattr tests a variable for a specific attribute. The variable name must be set as the first
parameter; the exact attribute as the second. If the attribute is present, true will be
returned; if not, false will be returned. Currently two values for attr are recognized: “reqhdr”
to test if a variable has been created by Yxorp as a request header variable, and “rsphdr”,
for a response header variable.

getcachearea() - return cache area name

Returns the cache area configured for this request.

getclientip() - return the client ip address

getclientip returns the ip address (IPv4 or IPv6) of the client associated with the current
request.

The value of the returned ip address may have been changed as a result of processing an X-
Forwarded-For header, if Yxorp is configured to do so. See the chapter on XFF processing for
details.

getclientcipherbits() - return the key length used in the
current SSL connection

getclientcipherbits returns the key length used in the current SSL connection between a
client and Yxorp.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getclientciphername() - return the cipher used in the
current SSL connection

getclientciphername returns the name of the cipher used in the current SSL connection
between a client and Yxorp.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,



false is returned.

getclientdomainname() - get the client domain name

getclientip returns the domain name of the client associated with the current request. Note
that using this function causes a domain name lookup to be done; this may impact
performance, especially when Yxorp is handling a large volume of requests.

getclientcertfailcode() — return the client certificate failure
code

getclientcertfailcode returns the code, as defined by OpenSSL, that identifies the failure
that occurred while verifying the client certificate presented on the current SSL connection
between a client and Yxorp. The code is obtained from the OpenSSL function
SSL_get_verify_result.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getclientcertfailmsg() — return the client certificate failure
message

getclientcertfailcode returns the message, as produced by OpenSSL, that identifies the
failure that occurred while verifying the client certificate presented on the current SSL
connection between a client and Yxorp. The message is obtained from the OpenSSL function
X509_verify_cert_error_string.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getclientcertinfo() - return client certificate information

getclientcertinfo returns information about the client certificate presented on the current
SSL connection between a client and Yxorp. The information is in the form returned by the
OpenSSL call X509_NAME_oneline.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getclientcertissuerinfo() — return client certificate issuer
information

getclientcertissuerinfo returns information about the issuer of the client certificate
presented on the current SSL connection between a client and Yxorp. The information is in
the form returned by the OpenSSL call X509_NAME_oneline.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.



getclientstatedvar(variablename) - read a variable from
the client state

getclientstatedvar reads a variable from the client state, if one exists for this request. The
variable name must be passed as a string. If the variable and the client state exist, the data
will be returned; otherwise, an empty string (i.e. false) will be returned.

getentity() - return the current entity

getentity returns the current entity. If there is none, false is returned. Normally, this
function can only be used in inboundentity or outboundentity rules.

Note that the rule vm, as it works on zero-terminated strings, cannot currently process
binary entities. Thus, if you are processing a request that carries a binary entity (ie. a
picture, jpeg, bitmap or other) the entity will be returned by this function, but following
statements can not process it completely.

getinboundentityrule() - return inboundentity rule

getinboundentity returns the name of the inboundentity rule. This attribute normally set by
the listener definition, and is reset to that value on session reuse; it may have been changed
by a call to setinboundentityrule() executed in the context of the current request.

getlength(variablename) - return the length of a variable

getlength returns the length of a variable. The name of the variable is passed to getlength.

getlistenerid() — return the listener id
getlistenerid returns the id (i.e. name) of the listener that has received the request that is

currently being processed.

getmaxcount(variablename) - return the number of
variables in a dupvar group

getmaxcount returns the number of variables in a duplicate variable group

getmaxlength(variablename) - return the maxlength
attribute of a variable

getmaxlength returns the maxlength attribute of a variable.

getorder(variablename) - return the order attribute of a
variable

getorder returns the order attribute of a variable.



getoriginalname(variablename) — return the originalname
attribute of a variable

getorder returns the originalname attribute of a variable.

getoutboundentityrule() - return outbound entity rule

Returns the name of the outbound entity rule. This attribute normally set by the listener
definition, and is reset to that value on session reuse; it may have been changed by a call to
setoutboundentityrule() executed in the context of the current request.

getrejectrule() - return reject rule

Returns the name of the reject rule. This attribute normally set by the listener definition,
and is reset to that value on session reuse; it may have been changed by a call to
setrejectrule() executed in the context of the current request.

getrequestnumber() - returns the ordinal number of this
request

getrequestnumber returns the ordinal number of this request, since the start of Yxorp.

getresponserule() — return response rule

Returns the name of the response rule. This attribute normally set by the listener definition,
and is reset to that value on session reuse; it may have been changed by a call to
setresponserule() executed in the context of the current request.

getservercertfailcode() - return the server certificate
failure code

getservercertfailcode returns the code, as defined by OpenSSL, that identifies the failure
that occurred while verifying the server certificate presented on the current SSL connection
between Yxorp and a (real) server. The code is obtained from the OpenSSL function
SSL_get_verify_result.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getservercertfailmsg() — return the server certificate
failure message

getservercertfailcode returns the message, as produced by OpenSSL, that identifies the
failure that occurred while verifying the server certificate presented on the current SSL
connection between Yxorp and a (real) server. The message is obtained from the OpenSSL
function X509_verify_cert_error_string.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,



false is returned.

getservercertinfo() - return server certificate information

getservercertinfo returns information about the server certificate presented on the current
SSL connection between Yxorp and a (real) server. The information is in the form returned
by the OpenSSL call X509_NAME_oneline.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getservercertissuerinfo() - return server certificate issuer
information

getservercertissuerinfo returns information about the issuer of the server certificate
presented on the current SSL connection between Yxorp and a (real) server. The information
is in the form returned by the OpenSSL call X509_NAME_oneline.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getservercipherbits() - return the key length used in the
current SSL connection

getservercipherbits returns the key length used in the current SSL connection between
Yxorp and a (real) server.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getserverciphername() - return the cipher used in the
current SSL connection

getserverciphername returns the name of the cipher used in the current SSL connection
between Yxorp and a (real) server.

If the current connection is not an SSL connection, or Yxorp is built without SSL support,
false is returned.

getserverturnaround() — return the turnaround time for the
server request

getserverturnaround returns the time, in milliseconds, that it took from sending the request
to the server, to the response header being completely received. This gives an indication of
server response; note that this time is however in some cases quite different from the
response time an end user may experience. This difference is at least explained by the
network time between Yxorp and the client, but also included is the time it takes the client
to render a page.



getsslbackend() - return the sslbackend flag

getsslbackend returns the value of the sslbackend flag. If set, this means Yxorp will use SSL
to the server; if not set, Yxorp will use plain HTTP.

getsticky() — return the sticky flag

getsticky returns the value of the sticky flag.

isccertverified() - return verification state of client
certificate

isccertverified() returns true if the certificate used on the SSL session between Yxorp and a
(real) server could be verified. If the session does not use SSL, or if Yxorp was built without
SSL support, false is returned.

isscertverified() - return verification state of server
certificate

isscertverified() returns true if the certificate used on the SSL session between a client and
Yxorp could be verified. If the session does not use SSL, or if Yxorp was built without SSL
support, false is returned.

issslsession() — return the SSL state of the client session

issslsession returns true if the client session uses SSL; false otherwise.

killclientstate() — remove the client state

Synonym for clearclientstate().

killsticky() - remove a sticky mapping from the client state

Synonym for clearsticky().

killvar(variablename) - remove a variable

Synonym for killvariable()

killvariable(variablename) - remove a variable

killvariable Kkills (removes) the variable of which the name is passed as a parameter from
the variable pool. This is especially useful if you want to keep a header from being passed
on.



// Don't send the Server: header at all
killvariable(“Server:”);

// Don't send any Cookie: headers
foreach i (enumerate dupvar("Cookie:")) {
killvariable($i);

ldap_bind(dn, pass)

Idap_bind will execute a bind operation to the ldap server set by a previous
ldap_set_serveruri function, to the dn that is passed and using the pass parameter.

ldap_init()

ldap_init causes the internal structures required for interaction with an ldap server to be
initialized, and must be called before any ldap library function is invoked through any of the
Idap functions other than ldap_set_<whatever>. Although this function may become
redundant in a version after Yxorp 2.33, it is good practice to call this function before
invoking ldap_search, ldap_bind or any other ldap action function.

ldap_search(filter )

Initiates a seach operation towards the ldap server that has been identified with the
ldap_set_serveruri function, respecting the parameters set by the ldap_set_searchbase,
ldap_set_searchdn, ldap_set_searchpw, ldap_set_searchscope functions. These parameters
will be used to do a bind to the ldap server (a so called 'administrative bind'); the connection
that is thus created will be used to do the search operation. The search operation may
return one or more dn that match the search criteria set both by the filter and by the
Idap_set_<x> functions. These dn will be set in dupvar variables with the basename of “dn”;
the ldap_search function returns the number of dupvars that have been set in this way.
Normally, for a successful implementation, the number of dn's returned should be exactly
one if the user is found or zero if not; all other values (as in, multiple definitions in the ldap
server could match to this user definition) are not generally useable.

The filter parameter is a string representation of the filter to apply in the search. The string
should conform to the format specified in RFC 4515, as extended by RFC 4526. For instance,
"(cn=Jane Doe)".

ldap_set_seachbase(base)

Sets the base dn that will be used in search operations initiated by the ldap_search call
following the use of this function.

ldap_set_searchdn(dn)

Sets the dn that will be used in search operations initiated by the ldap_search call following
the use of this function.



ldap_set_searchpw(pw)

Sets the password that will be used in search operations initiated by the ldap_search call
following the use of this function.

ldap_set_searchscope(scope)

This function sets the seach scope parameter into the Idap structure for use in an
ldap_seach function. The scope parameter should be one of the string values
LDAP_SCOPE_BASE, to search the object itself, LDAP_SCOPE_ONELEVEL, to search
the object’s immediate children, LDAP_SCOPE_SUBTREE, to search the object and all its
descendants, or LDAP_SCOPE_CHILDREN, to search all of the descendants. Note that the
latter requires that the server support the LDAP Subordinates Search Scope extension. If
the string value does not match one of the values listed here, exactly and case correct, then
the default of LDAP_SCOPE_SUBTREE will be applied.

See the documentation of the ldap client library and ldap server for further details.

ldap_set_serveruri(uri)

This function sets the uri to be used in a subsequent ldap interaction. The format of the uri
is as described in the documentation of the ldap_initialize function. The value presented
here will be passed to the ldap_initialize function in the ldap client library; see the
documentation of the ldap client library for further details.

redirect(url) - redirect request

redirects the request, by rejecting it with a statuscode 307 (Temporary Redirect), passing
the URL in a Location: header. This causes a browser to redirect to this URL.

rdlog(numerical value) - set rdlog master flag for the
current request

Calling rdlog() with a non-zero value causes the master rdlog flag to be set for this request.
If zero, no request detail log actions will be taken for this request. The effect varies
according to in which type of rule the call is executed.

rdlogfinalinternaldata(numerical value) - include dump of
internal structures

Calling rdlogfinalinternaldata() with a non-zero value causes Yxorp's internal data
structures for this request to be logged at the end of the request. The status of the flag is
examined at the end of the request.

rdlogerror(numerical value) - set rdlog error flag for the
current request

Calling rdlogerror() with a non-zero value causes the rdlog error flag to be set for this



request. If zero, the request detail log actions will be taken for this request, irrespective of
the result of the request. If non-zero, only requests ending in an error state will be logged to
the rdlog. The status of the flag is examined at the end of the request.

rdlogreceivedrequest(numerical value) - include dump of
received request

Calling rdlogreceivedrequest() with a non-zero value causes the data that was received from
the client to be logged. The status of the flag is examined during the request phase, but
(currently) before any rule executes. Hence, this function makes no sense (yet).

The value passed on this function is a bitmask. See the description of <requestdetaillog> for
the meaning of the bits.

rdlogreceivedresponse(numerical value) - include dump of
received response

Calling rdlogreceivedresponse() with a non-zero value causes the data that was received
from the server to be logged. The status of the flag is examined during the response phase.

The value passed on this function is a bitmask. See the description of <requestdetaillog> for
the meaning of the bits.

rdlogtransmittedrequest(numerical value) - include dump
of transmitted request

Calling rdlogtransmittedrequest() with a non-zero value causes the data that was sent to the
server to be logged. The status of the flag is examined during the request phase.

The value passed on this function is a bitmask. See the description of <requestdetaillog> for
the meaning of the bits.

rdlogtransmittedresponse(numerical value) - include dump
of transmitted response

Calling rdlogtransmittedresponse() with a non-zero value causes the data that was sent to
the server to be logged. The status of the flag is examined during the response phase.

The value passed on this function is a bitmask. See the description of <requestdetaillog> for
the meaning of the bits.

reject(reason) — reject request

the request is rejected, with the specified reason. The reason string is also logged to the
error log.



sanitizexforwardedfor(trusted proxy IP ranges) - check a
X-Forwarded-For: header

sanitizexforwardedfor scans a received X-Forwarded-For header to verify that all proxy
addresses are in the list of IP ranges passed as arguments. A variable number of arguments
can be passed.

See the chapter on XFF processing for details.

setattr(variablename, type) — set variable attribute

Sets the attribute on the specified variable. The following attribute values can be set:
RSPHDR: this variable is part of the response header group.

REQHDR: this variable is part of the request header group.

REJHDR: this variable is part of the reject header group.

setcachearea(cachearea) - set cache area name

Sets the cache area to use for this request.

setclientipfromxff() — set client ip from X-Forwarded-For:
header

If a X-Forwarded-For: header exists, and it is sanitized by calling one of the
sanitizexforwardedfor**() functions, calling setclientipfromxff() will have the effect that
yxorp's administration of the client ip address will be changed to the client address taken
from the X-Forwarded-For: header. For instance, if you call setclientipfromxff(), then
getclientip() or one of the clientiprange**() functions, then these functions will use the client
address from the X-Forwarded-For: header.

setclientstatedvar(variablename, value) - set a variable in
the client state

setclientstatedvar sets a variable from the client state, if one exists for this request. The
variable name must be set as the first parameter; its value as the second. Note that client
states are created after a request type rule runs, so on the first request from a client, the
client state is not yet available. Also note that the number of slots in the client state dvar
table is normally very limited (but it can be increased in the global configuration).

setclientstatefastage(seconds) — schedule removal of the
client state

In many cases it is preferable to not immediately remove the state information. This
situation would for instance occur while running a rule for an URI for a logoff page, which
refers to other entities like graphics that still have to be retrieved. Ifin such a case the
state information was immediately removed, retrieving the graphics entities would cause a



new state entry to be created in the client state table. For this reason, there is also the
setclientstatefastage() function.

After the call, the client state will remain active for at least the specified number of seconds.
After that time expires, the client state will be cleared by the first client state cleanup run;
this cleanup run may occur anywhere between immediately after the seconds expire, and
the clientstatecleanupinterval set in the globalconfiguration.

Unless you have clients on very slow links or very complicated logoff pages, 10 seconds
should be a reasonable setting for the above scenario.

setclientstateid(id) - manually set clientstate id for this
request

When a client state is needed, normally Yxorp will automatically create a client state id, and
use a cookie to store the value of the client state id in the client browser. If this is not
possible, for instance because the client has cookies disabled, it is possible to use some other
attribute of the request as a client state id.

When manually maintaining the client state, the setclientstateid function must be called in
a request rule for all requests that need access to the client state (for instance when using
the client state for sticky load balancing, this means all all requests). The client state id
passed to the functions must be the same exact string for all cases that need mapping to the
same client state. Care must be taken that different clients will not use the same state;
otherwise, unpredictable results may occur in dealing with the client state.

When manually maintaining client states, the automatic creation of client states must be
disabled. See setclientstateidgenerate on how to do this.

setclientstateidgenerate(value) — set automatic client state
id generation

When a client state is needed, normally Yxorp will automatically create a client state id, and
use a cookie to store the value of the client state id in the client browser. If this must be
prevented, for instance because the setclientstateid function is used to manually create the
client state id, the setclientstateidgenerate function must be called with a zero argument.
All non-zero arguments will result in the default behavior where Yxorp will generate the
client state id.

setconnectservertimeout(timeout) - set serverend timeout
value

Sets the timeout (in milliseconds) that is used for connecting to a server. The value is valid
only during the processing of the request that is being executed. The default value, that
applies if no call to this function is executed, is taken from <globalconfiguration>

setcookiedomain(string) — set cookie domain

This function sets the domain part of the state cookie that Yxorp uses for tracking or sticky
load balancing. If no domain is set, the generally accepted behavior of clients is to only send



back the cookie values to the same domain that set the cookie. If you use the domain part,
you can cause the cookie values to be sent to several hostnames in a domain group (i.e. set
the domain to .example.org to have the cookie sent to www.example.org, www2.example.org,
ete).

setdup(variablename, value) - set duplicate variable

Sets the next instance of the duplicate variable to the specified value.

If, for example, a dupvar exists:
ex=an
exl=example

the call setdup(“ex”, “test”) would have the following result:

ex=an
exl=example
ex2=test

setmaxlength(variablename, length) - set variable max
length attribute

Sets the maximum length attribute on the specified variable (after this, setting a longer
value in a variable results in the value being truncated).

setinboundentityrule(rulename) - set inbound entity rule
Sets the outbound entity rule to run. This attribute normally set by the listener definition,

and is reset on session reuse.

setorder(variablename, ordinal) — set variable order
attribute

Sets the order attribute on the specified variable.

setoriginalname(variablename, originalname) - set
variable originalname attribute

Sets the originalname attribute on the specified variable.

setoutboundentityrule(rulename) - set outbound entity
rule

Sets the outbound entity rule to run. This attribute normally set by the listener definition,
and is reset on session reuse.


http://www.example.org/

setreadfromservertimeout(timeout) - set serverend timeout
value

Sets the timeout (in milliseconds) that is used for reading from a server. The timeout applies
to each read operation, not to the processing of the entire response; the server has to send at
least some data within the timeout. The value is valid only during the processing of the
request that is being executed. The default value, that applies if no call to this function is
executed, is taken from <globalconfiguration>

setresponserule(rulename) - set response rule

Sets the response rule to run. This attribute normally set by the listener definition, and is
reset on session reuse.

setrejectrule(rulename) - set reject rule to run

Sets the reject rule to run. This attribute normally set by the listener definition, and is reset
on session reuse.

setsendxforwardedfor() - send X-Forwarded-For: header to
server

Calling setsendxforwardedfor() in a request rule causes Yxorp to send a X-Forwarded-For:
header to a server. If the header is considered sanitized (i.e. after calling the
sanitizexforwardedfor() function) the sanitized part of the header sent in from a client will
be included, and Yxorp will append the IP address of where it received the request from to
the header.

If no X-Forwarded-For was sent in from the client, if X-Forwarded-For was disabled as a
header in Yxorp's header table, or if no call to the sanitizexforwardedfor() function was
executed, Yxorp will send a X-Forwarded-For containing the IP address of the client
connection.

See the chapter on XFF processing for details.

setsslbackend() - set ssl backend

Forces the server session for this request to use SSL.

setsslserverconnecttimeout(timeout) - set serverend ssl
timer

This function sets the timer that is used when connecting to a server. The entire connect

operation, including SSL handshake, certificate validation etc. must complete within this
time. The timeout is specified in milliseconds, and valid only during the processing of the
request that is being executed. The default value, that applies if no call to this function is
executed, is taken from <globalconfiguration>.



setsslserverreadtimeout(timeout) - set serverend ssl timer

This function sets the timer that is used when reading from a server. The timeout is
specified in milliseconds, and valid only during the processing of the request that is being
executed. The default value, that applies if no call to this function is executed, is taken from
<globalconfiguration>.

setsslserverwritetimeout(timeout) - set serverend ssl timer

This function sets the timer that is used when writing to a server. The timeout is specified
in milliseconds, and valid only during the processing of the request that is being executed.
The default value, that applies if no call to this function is executed, is taken from
<globalconfiguration>.

setsslserverclosetimeout(timeout) - set serverend ssl timer

This function sets the timer that is used when closing a server connection. The timeout is
specified in milliseconds, and valid only during the processing of the request that is being
executed. The default value, that applies if no call to this function is executed, is taken from
<globalconfiguration>.

setsticky() - set sticky flag

Sets the sticky flag for this request, causing sticky scheduling and client tracking for this
request.

settargetserver(id) - set target server

Normally Yxorp uses the value of the Host: header to determine which server to send a
request to. If however the settargetserver() function is used, Yxorp will send a request to the
server whose id is passed as a parameter. This can be useful if a large number of virtual
hosts is defined on a group of real servers, for which Yxorp is to do load balancing; in this
case, Yxorp does not need to be aware of each individual virtual host domain.

setwritetoservertimeout(timeout) - set serverend timeout
value

Sets the timeout (in milliseconds) that is used for writing to a server. The timeout applies to
each write operation, not to the processing of the entire request. The value is valid only
during the processing of the request that is being executed. The default value, that applies if
no call to this function is executed, is taken from <globalconfiguration>

statuscodemsg(code) - returns status code textual message

The text message for the HTTP response code, as defined in the global configuration, is
returned.



strremove(haystack, needle) - remove matching string

The strremove function returns a copy of the string “haystack” from which the first
occurrence of the string “needle” has been removed. If “haystack” does not contain any
occurrence of the string “needle”, the entire “haystack” is returned.

The strremove function is especially useful in conjunction with regular expressions, as in the
following example:

a="aapnootmies";
a -/(aap) (noot) (mies)/;

tmpl=strremove(a, 1);
// resulting value of tmpl is “nootmies”

trace(message) — send a message to the trace log

The message is written to the trace log. If no trace log is active, the message is discarded.

unsetsslbackend() - clear ssl backend

Stops forcing the server session for this request to use SSL.

unsetsticky() - clear sticky flag

Clears the sticky flag for this request, disabling sticky scheduling and client tracking for
this request.

writetofile(filename, value) — write to a file

writetofile takes the value of the second argument, and writes that to a file. The name of the
file is set to the value of the first argument.

As this is one of the very few reasons for Yxorp to access the file system and thus poses
security risks, this function may be removed for security reasons. If you do not want this to
happen, inform the authors.

writeentitytofile(filename) — writes entity to a file

writeentitytofile writes the current entity (if any) to a file. The name of the file is set to the
value of the first argument.

As this is one of the very few reasons for Yxorp to access the file system and thus poses
security risks, this function may be removed for security reasons. If you do not want this to
happen, inform the authors.

yesno(x) — return truth value as yes or no

yesno takes the truth value from the argument and returns yes (=true) or no(=false).



The virtual machine

The code generated from the rule program sources is compiled, and executed by a virtual
machine. The virtual machine implements a stack machine (like a RPN desk calculator)
working on strings.

In general, the virtual machine is very fast - it is designed and tuned to process strings
quickly, and it does. The instructions that the virtual machine processes are almost all very
simple and straightforward. Even though the rule compiler is simple and straightforward,
optimizations are automatically done for both trivial and expensive virtual machine
instructions. Most data manipulations are accomplished just by moving pointers around.
Temporary variables are allocated in scratch memory pools; this speeds up execution
because memory allocation is done few times if not just once; also this ensures that all the
used pointers will be valid for the duration of the VM run, even if memory shortages occur.

There is, of course, also a weak point: the virtual machine is not especially good at
arithmetic, or at handling data that is poorly expressed as strings. Calculations require
several conversions. Number handling is quite simplistic; if a string value is used in a
numeric operation, the value will just default to 0 instead of causing an error (this behavior
is likely to change in a future version). The value of false (i.e. the empty string) may be
assumed to be treated as 0.

Also noteworthy, since the introduction of entity rules, is the fact that the virtual machine
works on zero-terminated strings. Entities that contain binary zeros cannot be processed
directly; specific function calls are necessary to overcome this weakness. These functions
need by definition to be included as base code; it is not (yet) possible to define these without
including source code.

The use of memory pools causes that there is a limit to the maximum size of an object.
Currently, this is in the order of 4K bytes, which should not be a limitation for typical use. If
your application needs larger objects, source-level tuning is necessary.

As all other Yxorp modules, the virtual machine contains a large amount of debugging
hooks. If you build Yxorp with debugging enabled, performance will be somewhat impacted;
however, only in very special cases you would have to worry about the performance penalty
incurred with enabling debugging in the build. Unless you are running special hardware
(embedded systems, router hardware, etc) or are running a very high volume site (as in,
sustained throughput of over 100Mbit) you should by default include the debug code; normal
current hardware will handle Yxorp's debugging code easily. You may have to think about
dealing with the debugging output though - this will easily run into gigabytes of data.



	Introduction
	How to deploy YXORP
	Minimal network setup
	Secure network setup
	YXORP box setup
	Domain names
	SSL certificates

	Basic configuration tutorial
	Basic setup
	Testing the configuration

	Adding SSL
	Testing the configuration

	Adding basic authentication
	Testing the configuration

	Adding support for non-standard headers
	Testing the configuration

	Adding load balancing
	Testing the configuration

	Adding a sorry rule
	Testing the configuration

	Sticky load balancing
	Testing the configuration

	Sticky loss rules
	Testing the configuration


	Rule programming concepts
	Request processing
	Request rules
	Inboundentity rules
	Reject rules

	Server selection
	Sorry rules
	Stickyloss rules

	Response processing
	Response rules
	Outboundentity rules


	Rule progamming examples
	Enforcing SSL for certain requests
	SSL to backend servers
	Filtering on client IP address, range, or domain name
	Filtering on a single IP address
	Filtering on an IP range
	Filtering on domain names

	Using black-, white- and greylisting
	Blacklisting
	Whitelisting
	Greylisting

	Using an application to authenticate access to other URI's
	Situation
	Example
	Conclusion


	Advanced concepts
	Configuration reference
	Overview of the configuration file
	Syntax of the configuration file
	Configuration file contents
	Configuring listeners
	Reconfiguring
	Example

	Configuring TLS extension Server Name Indication
	Reconfiguring
	Example

	Configuring servers
	Reconfiguring
	Example

	Configuring virtual servers
	Reconfiguring
	Example

	Configuring real servers
	Reconfiguring
	Example

	Configuring rules
	Reconfiguring
	Example 

	Configuring logging
	Reconfiguring
	Example

	Configuring request detail logging
	Reconfiguring
	Example

	Configuring a configuration listener 
	Reconfiguring
	Example

	Configuring threads
	Reconfiguring
	Example

	Configuring security
	Reconfiguring
	Example

	Configuring basic authentication
	Reconfiguring
	Example

	Configuring digest authentication
	Reconfiguring
	Example

	Configuring ldap servers
	Reconfiguring
	Example

	Configuring ldap sources
	Reconfiguring
	Example

	Configuring cache areas
	Reconfiguring
	Example

	Configuring global settings
	The method table
	The header table
	The status code table
	Reconfiguring
	Example



	Rule language reference
	Introduction
	Statements
	Variables
	Expressions and operator precedence
	Special variables
	Rule syntax
	Program
	Block
	Statement	
	If
	Foreach
	Whitelist
	Blacklist
	Return
	Expression
	Identifier
	Numbers
	Literals
	Indirect variable
	Regular expressions

	Function reference 
	basicauth_add(source, realm) - cache basicauth credentials 
	basicauth_check(source, realm) - check basicauth credentials
	basicauth_getpass() - read password from basicauth credentials
	basicauth_getuser() - read userid from basicauth credentials
	basicauth_reject(realm) - cause a 401 status code
	clearclientstate() – remove the client state
	clearsticky() – remove a sticky mapping from the client state
	clientinrange(range) – check if client IP is in a range
	clientinip6range(range) – check if client IP is in an IPv6 range
	clientstate(type) – retrieve value from client state
	concat(...) – concatenate 
	contains(haystack, needle) – test if needle contains haystack
	contains_characters(string, list) – test if string contains characters in list
	containscase(haystack, needle) – test if needle contains haystack
	digest_auth_check(realm, authentication source) – enforce digest authentication
	enumerate_dupvar(variablename) – enumerate duplicate variables
	enumerate_reqhdr() – enumerate request header variables
	enumerate_rsphdr() – enumerate response header variables
	equal(s, r) – compare two variables
	equalcase(s, r) – case insensitive compare of two variables
	getattr(variablename, attr) – test attributes of a variable 
	getcachearea() – return cache area name
	getclientip() – return the client ip address
	getclientcipherbits() – return the key length used in the current SSL connection
	getclientciphername() – return the cipher used in the current SSL connection
	getclientdomainname() – get the client domain name
	getclientcertfailcode() – return the client certificate failure code
	getclientcertfailmsg() – return the client certificate failure message
	getclientcertinfo() – return client certificate information
	getclientcertissuerinfo() – return client certificate issuer information
	getclientstatedvar(variablename) – read a variable from the client state
	getentity() – return the current entity
	getinboundentityrule() – return inboundentity rule
	getlength(variablename) – return the length of a variable 
	getlistenerid() – return the listener id
	getmaxcount(variablename) – return the number of variables in a dupvar group
	getmaxlength(variablename) – return the maxlength attribute of a variable 
	getorder(variablename) – return the order attribute of a variable 
	getoriginalname(variablename) – return the originalname attribute of a variable 
	getoutboundentityrule() – return outbound entity rule
	getrejectrule() – return reject rule
	getrequestnumber() – returns the ordinal number of this request
	getresponserule() – return response rule
	getservercertfailcode() – return the server certificate failure code
	getservercertfailmsg() – return the server certificate failure message
	getservercertinfo() – return server certificate information
	getservercertissuerinfo() – return server certificate issuer information
	getservercipherbits() – return the key length used in the current SSL connection
	getserverciphername() – return the cipher used in the current SSL connection
	getserverturnaround() – return the turnaround time for the server request
	getsslbackend() – return the sslbackend flag
	getsticky() – return the sticky flag
	isccertverified() – return verification state of client certificate
	isscertverified() – return verification state of server certificate
	issslsession() – return the SSL state of the client session
	killclientstate() – remove the client state
	killsticky() – remove a sticky mapping from the client state
	killvar(variablename) – remove a variable
	killvariable(variablename) – remove a variable
	ldap_bind(dn, pass)
	ldap_init()
	ldap_search(filter )
	ldap_set_seachbase(base)
	ldap_set_searchdn(dn)
	ldap_set_searchpw(pw)
	ldap_set_searchscope(scope)
	ldap_set_serveruri(uri)
	redirect(url) – redirect request
	rdlog(numerical value) – set rdlog master flag for the current request
	rdlogfinalinternaldata(numerical value) – include dump of internal structures
	rdlogerror(numerical value) – set rdlog error flag for the current request
	rdlogreceivedrequest(numerical value) – include dump of received request
	rdlogreceivedresponse(numerical value) – include dump of received response
	rdlogtransmittedrequest(numerical value) – include dump of transmitted request
	rdlogtransmittedresponse(numerical value) – include dump of transmitted response
	reject(reason) – reject request
	sanitizexforwardedfor(trusted proxy IP ranges) – check a X-Forwarded-For: header
	setattr(variablename, type) – set variable attribute
	setcachearea(cachearea) – set cache area name
	setclientipfromxff() – set client ip from X-Forwarded-For: header
	setclientstatedvar(variablename, value) – set a variable in the client state
	setclientstatefastage(seconds) – schedule removal of the client state
	setclientstateid(id) – manually set clientstate id for this request
	setclientstateidgenerate(value) – set automatic client state id generation
	setconnectservertimeout(timeout) – set serverend timeout value
	setcookiedomain(string) – set cookie domain
	setdup(variablename, value) – set duplicate variable
	setmaxlength(variablename, length) – set variable max length attribute
	setinboundentityrule(rulename) – set inbound entity rule
	setorder(variablename, ordinal) – set variable order attribute
	setoriginalname(variablename, originalname) – set variable originalname attribute
	setoutboundentityrule(rulename) – set outbound entity rule
	setreadfromservertimeout(timeout) – set serverend timeout value
	setresponserule(rulename) – set response rule
	setrejectrule(rulename) – set reject rule to run
	setsendxforwardedfor() – send X-Forwarded-For: header to server
	setsslbackend() – set ssl backend 
	setsslserverconnecttimeout(timeout) – set serverend ssl timer
	setsslserverreadtimeout(timeout) – set serverend ssl timer
	setsslserverwritetimeout(timeout) – set serverend ssl timer
	setsslserverclosetimeout(timeout) – set serverend ssl timer
	setsticky() – set sticky flag
	settargetserver(id) – set target server
	setwritetoservertimeout(timeout) – set serverend timeout value
	statuscodemsg(code) – returns status code textual message
	strremove(haystack, needle) – remove matching string
	trace(message) – send a message to the trace log
	unsetsslbackend() – clear ssl backend 
	unsetsticky() – clear sticky flag
	writetofile(filename, value) – write to a file
	writeentitytofile(filename) – writes entity to a file
	yesno(x) – return truth value as yes or no

	The virtual machine


